Konvexität < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:02 Sa 22.10.2011 | Autor: | ulla |
Aufgabe | Zeigen sie die Konvexität der folgenden Mengen:
a) Hyperebenen
b) Halbräume
c) [mm] \bigcap_{}^{} A_{i}, [/mm] falls [mm] A_{i} [/mm] eine Folge konvexer Mengen ist. [mm] i\in\IN
[/mm]
d) Polyeder |
Hallo
kann mir bitte jemand bei der Lösung dieser Aufgabe helfen. In der Vorlesung hab ich da leider überhaupt nichts verstanden. Ich kann mir noch nicht mal einen Ansatz dazu denken. Wir haben lediglich ein Bild zu rKonvexität aufgezeichnet...mehr leider nicht.
Vielen lieben Dank.
Ich habe diese Aufgabe in sonst keinem Forum gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:27 Mo 24.10.2011 | Autor: | Stoecki |
definition von konvexität ist wie folgt: X ist konvex, genau dann wenn für je zwei beliebige Punkte x,y [mm] \in [/mm] X gilt, dass für alle [mm] \lambda \in [/mm] (0,1) gilt, dass [mm] \lambda [/mm] x + [mm] (1-\lambda) [/mm] y [mm] \in [/mm] X gilt.
bildlich: alle punkte auf der verbindungslinie liegen auch in X
(a) ich vermute mal, dass die frage aus dem bereich operations research ist. dort werden hyperebenen in der regel als die lösung der gleichung a^Tx = b betrachtet. nimm mal an, dass x und y diese gleichung erfüllen und benutz die definition
(b) ein halbraum lässt sich durch a^Tx [mm] \le [/mm] b beschreiben. nehme wieder an, du hast zwei beliebige feste punkte x,y die diese ungleichung erfüllen und zeige, dass obige eigenschaft gilt.
(c) hier wirds was theoretischer, aber der beweis ist im prinzip wie vorher. es geht mit induktion: sei x,y [mm] \in A_1 [/mm] und [mm] \in A_2. [/mm] zudem sind [mm] A_1 [/mm] und [mm] A_2 [/mm] konvex. was gilt dann für die verbindungslinien?
(d) ein polyeder ist ein endlicher schnitt von halbräumen. benutze a,b und c und folgere einfach
gruß bernhard
|
|
|
|