www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Konvexität
Konvexität < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvexität: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 11:02 Sa 22.10.2011
Autor: ulla

Aufgabe
Zeigen sie die Konvexität der folgenden Mengen:
a) Hyperebenen
b) Halbräume
c) [mm] \bigcap_{}^{} A_{i}, [/mm] falls [mm] A_{i} [/mm] eine Folge konvexer Mengen ist.  [mm] i\in\IN [/mm]
d) Polyeder

Hallo
kann mir bitte jemand bei der Lösung dieser Aufgabe helfen. In der Vorlesung hab ich da leider überhaupt nichts verstanden. Ich kann mir noch nicht mal einen Ansatz dazu denken. Wir haben lediglich ein Bild zu rKonvexität aufgezeichnet...mehr leider nicht.

Vielen lieben Dank.

Ich habe diese Aufgabe in sonst keinem Forum gestellt.

        
Bezug
Konvexität: Antwort
Status: (Antwort) fertig Status 
Datum: 08:27 Mo 24.10.2011
Autor: Stoecki

definition von konvexität ist wie folgt: X ist konvex, genau dann wenn für je zwei beliebige Punkte x,y [mm] \in [/mm] X gilt, dass für alle [mm] \lambda \in [/mm] (0,1) gilt, dass [mm] \lambda [/mm] x + [mm] (1-\lambda) [/mm] y [mm] \in [/mm] X gilt.
bildlich: alle punkte auf der verbindungslinie liegen auch in X
(a) ich vermute mal, dass die frage aus dem bereich operations research ist. dort werden hyperebenen in der regel als die lösung der gleichung a^Tx = b betrachtet. nimm mal an, dass x und y diese gleichung erfüllen und benutz die definition

(b) ein halbraum lässt sich durch a^Tx [mm] \le [/mm] b beschreiben. nehme wieder an, du hast zwei beliebige feste punkte x,y die diese ungleichung erfüllen und zeige, dass obige eigenschaft gilt.

(c) hier wirds was theoretischer, aber der beweis ist im prinzip wie vorher. es geht mit induktion: sei x,y [mm] \in A_1 [/mm] und [mm] \in A_2. [/mm] zudem sind [mm] A_1 [/mm] und [mm] A_2 [/mm] konvex. was gilt dann für die verbindungslinien?

(d) ein polyeder ist ein endlicher schnitt von halbräumen. benutze a,b und c und folgere einfach

gruß bernhard

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de