www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Konvexkombination
Konvexkombination < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvexkombination: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 Mo 22.08.2016
Autor: Mathics

Aufgabe
Für Konvexität gilt, dass falls y [mm] \ge [/mm] x und z [mm] \ge [/mm] x, dann [mm] \alpha [/mm] * y + (1 - [mm] \alpha) [/mm] * z [mm] \ge [/mm] x. mit 0 < [mm] \alpha [/mm] < 1.

Gilt dann auch: y > x und z [mm] \ge [/mm] x, dann [mm] \alpha [/mm] * y + (1 - [mm] \alpha) [/mm] * z > x. ?

Hallo,

wir haben gelernt, dass bei Konvexität die Bessermengen konvex sind, also wenn Alternativen y und z einer Alternative x vorgezogen werden [mm] (\ge), [/mm] dann wird auch jede Mischung (Konvexkombination) zwischen y und z der Alternative x vorgezogen.

Ich habe es grafisch versucht zu zeichnen, und immer wurde die Behauptung erfüllt, also jede Gerade, welche die Punkte y und z verbunden hat, war strikt besser als x.

Ist die Behauptung also richtig?

LG
Mathics

        
Bezug
Konvexkombination: Antwort
Status: (Antwort) fertig Status 
Datum: 13:05 Mo 22.08.2016
Autor: leduart

Hallo
da [mm] 0<\alpha<=1 [/mm] kann man natürlich [mm] \alpha [/mm] und [mm] 1-\alpha [/mm] austauschen
Gruss leduart

Bezug
                
Bezug
Konvexkombination: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:15 Mo 22.08.2016
Autor: Mathics


>   da0<0 [mm]\alpha<=1[/mm] kann man natürlich [mm]\alpha[/mm] und [mm]10\alpha[/mm]
> austauschen


Hallo leduart,

das habe ich leider nicht verstanden. Könntest du mir den Gedanke näher erläutern?

LG
Mathics

Bezug
                        
Bezug
Konvexkombination: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:37 Di 23.08.2016
Autor: leduart

sorry, in meinem post waren zu viel Tipfehler, jetzt verbessert
Gruß leduart

Bezug
        
Bezug
Konvexkombination: Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 Mo 22.08.2016
Autor: fred97


> Für Konvexität gilt, dass falls y [mm]\ge[/mm] x und z [mm]\ge[/mm] x, dann
> [mm]\alpha[/mm] * y + (1 - [mm]\alpha)[/mm] * z [mm]\ge[/mm] x. mit 0 < [mm]\alpha[/mm] < 1.
>  
> Gilt dann auch: y > x und z [mm]\ge[/mm] x, dann [mm]\alpha[/mm] * y + (1 -
> [mm]\alpha)[/mm] * z > x. ?
>  Hallo,
>  
> wir haben gelernt, dass bei Konvexität die Bessermengen
> konvex sind, also wenn Alternativen y und z einer
> Alternative x vorgezogen werden [mm](\ge),[/mm] dann wird auch jede
> Mischung (Konvexkombination) zwischen y und z der
> Alternative x vorgezogen.
>
> Ich habe es grafisch versucht zu zeichnen, und immer wurde
> die Behauptung erfüllt, also jede Gerade, welche die
> Punkte y und z verbunden hat, war strikt besser als x.
>  
> Ist die Behauptung also richtig?

Ja. Das kannst Du so sehen: sei also y > x , z $ [mm] \ge [/mm] $ x und  0 < $ [mm] \alpha [/mm] $ < 1.

Dann: [mm] $\alpha [/mm] *y > [mm] \alpha [/mm] *x$ und [mm] $(1-\alpha) [/mm] *z [mm] \ge (1-\alpha) [/mm] *x.$  Somit

    $ [mm] \alpha [/mm]  * y + (1 -  [mm] \alpha) [/mm]  * z > [mm] \alpha [/mm]  * x+ [mm] (1-\alpha)*x=x$ [/mm]

FRED


>  
> LG
>  Mathics


Bezug
                
Bezug
Konvexkombination: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:42 Di 23.08.2016
Autor: Mathics

Eine Funktion wie u=min(x1, x2) ist in einem x1,x2-Diagramm ja L-Förmig, dessen Knickpunkte miteinander verbunden eine steigende Diagonale ergeben würde.

Wäre es auch möglich, dass man eine konvexe Funktion hat mit ebenfalls diesen L-förmigen Kurven, die allerdings ledliglich nach rechts verschoben sind, sodass, wenn man die Knickpunkte verindet, einfach eine Horizontale auf Höhe des Knickpunktes erhält. Das wäre das einzige, was mir einfallen würde, wo der Behauptung widersprochen werden könnte. Ist so etwas aber überhaupt möglich?

Ich habe es unten auch nochmal gezeichnet.

[Dateianhang nicht öffentlich]

LG
Mathics

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                        
Bezug
Konvexkombination: Antwort
Status: (Antwort) fertig Status 
Datum: 12:15 Di 23.08.2016
Autor: leduart

Hallo
das ist ja keine Funktion, und deine andere Zuordnung kannst du offensichtlich nur stückweise definieren . Was willst du damit, und was hat das mit deiner Frage nach konvex zu tun?
Gruß leduart

Bezug
        
Bezug
Konvexkombination: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 Di 23.08.2016
Autor: HJKweseleit


> Für Konvexität gilt, dass falls y [mm]\ge[/mm] x und z [mm]\ge[/mm] x, dann
> [mm]\alpha[/mm] * y + (1 - [mm]\alpha)[/mm] * z [mm]\ge[/mm] x. mit 0 < [mm]\alpha[/mm] < 1.
>  
> Gilt dann auch: y > x und z [mm]\ge[/mm] x, dann [mm]\alpha[/mm] * y + (1 -
> [mm]\alpha)[/mm] * z > x. ?

Ja klar!

Deine zweite Aussage entspricht doch genau der ersten, du hast doch nur die Buchstaben vertauscht. Das ist so ähnlich, als wenn du fragst:

Wenn [mm] (a+b)^2 [/mm] = [mm] a^2+2ab+b^2 [/mm] ist, ist dann auch [mm] (c+d)^2 [/mm] = [mm] c^2+2cd+d^2? [/mm]

Oder bezieht sich deine Frage darauf, dass du bei der 2. Aussage nur ein < statt ein [mm] \le [/mm] Zeichen gesetzt hast? Dann ist sie so auch richtig, weil [mm] \alpha [/mm] nicht 0 sein darf (sonst käme heraus z > x, aber wir wissen nur, dass [mm] z\ge [/mm] x ist).

Beweis:

[mm] \alpha [/mm] * y + (1 - [mm] \alpha) [/mm] * z [mm] \ge \alpha [/mm] * y + (1 - [mm] \alpha) [/mm] * x (da 1 - [mm] \alpha \ge [/mm] 0) > [mm] \alpha [/mm] * x + (1 - [mm] \alpha) [/mm] * x (da [mm] \alpha [/mm] > 0) = x


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de