www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Koordinaten von Polynomen
Koordinaten von Polynomen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinaten von Polynomen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 04:13 So 08.12.2013
Autor: Cccya

Aufgabe
Betrachten Sie im reellen Vektorraum V3 der Polynome mit reellen Koeffizienten vom
Grad kleiner oder gleich drei die Polynome

pj = [mm] (1-X)^j [/mm]        j Element (0,1,2,3)

q1 = [mm] X^2-X [/mm]

q2 = [mm] X^3-1 [/mm]

a) Geben Sie die Koordinaten von q1 und q2 bezüglich der geordneten Basis B =
(p0; p1; p2; p3) an (es darf vorausgesetzt werden, dass B eine Basis ist).

b)Beweisen Sie, dass q1; q2 linear unabhängig sind und ergänzen Sie die Menge (q1; q2)
durch Elemente von B zu einer Basis von V3.

Begründen Sie Ihre Ergebnisse.

Ich habe diese Frage in keinem anderen Forum gestellt.

Meine Lösung:
a) Ich mache einen Koeffizientenvergleich der Form (für q1):

[mm] aX^3+bX^2+cX+d [/mm] = [mm] y2X^2+y3X [/mm] weil die gegebene Basis auch jederzeit zu [mm] (1,x,x^2,x^3) [/mm] umgeformt werden kann. Dann komme ich auf (0,1,-1,0)
Für q2 analog (1,0,0,-1)

b) Man kann die gerade Bestimmten Koordinaten bezüglich der geordneten Basis verwenden: a(0,1,-1,0)+b(1,0,0,-1)=(0,0,0,0) ist offensichtlich nur für a=b=0 erfüllt. Um zur Basis zur Ergänzen muss man nur überprüfen mit welchen Ergänzungen man alle Elemente der geordneten Basis darstellen kann. Dies ist z.B. möglich mit [mm] (1,x,(x^2-x),(x^3-1)) [/mm] weil [mm] x^2= (x^2-x)-x [/mm]
und [mm] x^3=(x^3-1)-1 [/mm]

Sind diese Lösungen korrekt und was müsste ich eventuell noch an Begründungen schreiben?
Vielen Dank schonmal.  

        
Bezug
Koordinaten von Polynomen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:00 So 08.12.2013
Autor: angela.h.b.


> Betrachten Sie im reellen Vektorraum V3 der Polynome mit
> reellen Koeffizienten vom
> Grad kleiner oder gleich drei die Polynome

>

> pj = [mm](1-X)^j[/mm] j Element (0,1,2,3)

>

> q1 = [mm]X^2-X[/mm]

>

> q2 = [mm]X^3-1[/mm]

>

> a) Geben Sie die Koordinaten von q1 und q2 bezüglich der
> geordneten Basis B =
> (p0; p1; p2; p3) an (es darf vorausgesetzt werden, dass B
> eine Basis ist).

>

> b)Beweisen Sie, dass q1; q2 linear unabhängig sind und
> ergänzen Sie die Menge (q1; q2)
> durch Elemente von B zu einer Basis von V3.

>

> Begründen Sie Ihre Ergebnisse.
> Ich habe diese Frage in keinem anderen Forum gestellt.

>

> Meine Lösung:
> a) Ich mache einen Koeffizientenvergleich der Form (für
> q1):

>

> [mm]aX^3+bX^2+cX+d[/mm] = [mm]y2X^2+y3X[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



Hallo,

ich verstehe nicht, was Du tust.

Du mußt a,b,c,d finden mit

X^2-X=a(1-X)^0+b(1-X)^1+c(1-X)^2+d(1-X)^3,

der Koordinatenvektor bzgl B ist dann \vektor{a\\b\\c\\d).


> weil die gegebene Basis auch
> jederzeit zu [mm](1,x,x^2,x^3)[/mm] umgeformt werden kann. Dann
> komme ich auf (0,1,-1,0)

Schauen wir mal:

[mm] \vektor{0\\1\\-1\\0}=1*(1-X)-1*(3X-3X^2+X^31-X)^2=1-X-1+2X-X^2=X-X^2\not=q_1. [/mm]

> Für q2 analog (1,0,0,-1)

[mm] =(1-X)^0-(1-X)^3=1-1+3X-3X^2+X^3=3X-3X^2+X^3\not=q_2 [/mm]


>

> b) Man kann die gerade Bestimmten Koordinaten bezüglich
> der geordneten Basis verwenden:
> a(0,1,-1,0)+b(1,0,0,-1)=(0,0,0,0) ist offensichtlich nur
> für a=b=0 erfüllt.

Das kann man so machen.

Man kann aber auch vorrechnen, daß

aus [mm] aq_1+bq_2=0 [/mm] folgt a=b=0.


> Um zur Basis zur Ergänzen muss man
> nur überprüfen mit welchen Ergänzungen man alle Elemente
> der geordneten Basis darstellen kann.

So kann (!) man das machen.

> Dies ist z.B.
> möglich mit [mm](1,x,(x^2-x),(x^3-1))[/mm] weil [mm]x^2= (x^2-x)-x[/mm]
> und
> [mm]x^3=(x^3-1)-1[/mm]

Die Überlegung stimmt, aber Du solltest auch unbedingt vorrechnen, daß [mm] (1,x,(x^2-x),(x^3-1)) [/mm] linear unabhängig ist und dann sagen: diese 4 linear unabhängige Vektoren sind eine Basis, denn [mm] V_3 [/mm] hat die Dimension 4.

LG Angela

>

> Sind diese Lösungen korrekt und was müsste ich eventuell
> noch an Begründungen schreiben?
> Vielen Dank schonmal.


Bezug
                
Bezug
Koordinaten von Polynomen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:44 So 08.12.2013
Autor: Cccya

Vielen Dank für deine Antwort. Wir haben das bei uns glaube ich so eingeführt dass beim Koeffizientenvergleich vom höchsten Polynom zum niedrigsten gezählt wird. Deshalb ist a bei mir die Koordinate bezüglich [mm] (1-X)^3 [/mm] und b die bezüglich [mm] (1-X)^2 [/mm] usw. So komme ich dann auf:

[mm] 0*(1-X)^3+1*(1-X)^2+-1*(1-X)+0*1 [/mm] = [mm] 1-2X+X^2 -1+X=X^2-X=q1 [/mm]

Ich sehe aber auch grad dass ich bei meinem Ansatz  nen Schreibfehler drin habe, kein Wunder dass dir der merkwürdig vorkam :D.

Zu b): Ist die lineare Unabhängigkeit nicht schon klar weil eine Basis maximale lineare Teilmenge und minimales Erzeugendensystem ist und wenn daher die geordnete Basis 4 Elemente hat dann muss jedes andere Erzeugendensystem auch mindestens 4 linear unabhängige Elemente haben? Erzeugendensystem ist ja gezeigt weil die geordnete Basis dargestellt werden kann und weniger als 4 linear unabhängige Elemente sind nicht möglich.

Bezug
                        
Bezug
Koordinaten von Polynomen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Mo 09.12.2013
Autor: angela.h.b.


> Vielen Dank für deine Antwort. Wir haben das bei uns
> glaube ich so eingeführt dass beim Koeffizientenvergleich
> vom höchsten Polynom zum niedrigsten gezählt wird.
> Deshalb ist a bei mir die Koordinate bezüglich [mm](1-X)^3[/mm] und
> b die bezüglich [mm](1-X)^2[/mm] usw. So komme ich dann auf:

>

> [mm]0*(1-X)^3+1*(1-X)^2+-1*(1-X)+0*1[/mm] = [mm]1-2X+X^2 -1+X=X^2-X=q1[/mm]

Hallo,

beim Koordinatenvektor kommt es auf die Reihenfolge der Basisvektoren in der Basis an.
Hier war gegeben:
>B =(p0; p1; p2; p3)
mit [mm] p_j:=(1-X)^j, [/mm]

und deshalb ist der Koordinatenvektor von [mm] p_1 [/mm] der Vektor [mm] \vektor{0\\-1\\1\\0}. [/mm]
Das ist nicht verhandelbar...


> Zu b): Ist die lineare Unabhängigkeit nicht schon klar
> weil eine Basis maximale lineare Teilmenge

linear unabhängige Teilmenge

> und minimales
> Erzeugendensystem ist und wenn daher die geordnete Basis 4
> Elemente hat dann muss jedes andere Erzeugendensystem auch
> mindestens 4 linear unabhängige Elemente haben?

Ja.

Du kannst es schon so machen:

> Erzeugendensystem ist ja gezeigt weil die geordnete Basis
> dargestellt werden kann

Weil die Standardbasis dargestellt werden kann, ist es ein Erzeugendensystem.
Es ist auch ein minimales Erzeugendensystem,
aber das müßte noch nachvollziehbar begründet werden. (Nicht unbedingt im Forum, aber auf Deinem Lösungsblatt)

LG Angela


> und weniger als 4 linear
> unabhängige Elemente sind nicht möglich.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de