www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Koordinatenform Gerade
Koordinatenform Gerade < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatenform Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:54 Mo 03.05.2010
Autor: omarco

also ich habe die gleichung g:x = [mm] \vektor{-2\\3\\4}+t*\vektor{1\\2\\-1} [/mm]

wie kommt man nun auf diese Gleichung :
E: [mm] x_1-2x_2-3x_3= [/mm] 1

Wie kommt man jetzt darauf ?
Und wie kann ich aus einer Gerade etwas mit einer Ebene machen ?

        
Bezug
Koordinatenform Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 22:08 Mo 03.05.2010
Autor: Al-Chwarizmi


>  also ich habe die gleichung

>    g:  x = [mm]\vektor{-2\\3\\4}+t*\vektor{1\\2\\-1}[/mm]
>  
> wie kommt man nun auf diese Gleichung :
>  E: [mm]x_1-2x_2-3x_3=[/mm] 1



Hallo omarco,

Die erste Gleichung beschreibt eine Gerade im [mm] \IR^3, [/mm] die andere
eine Ebene im [mm] \IR^3. [/mm] Die Gleichungen sind also keineswegs gleichwertig.
Man kann die zweite Gleichung nicht aus der ersten herleiten !

Die Gerade g liegt auch nicht etwa in der Ebene E, aber sie liegt in
der zu E parallelen Ebene  P:  $\ [mm] x_1-2\,x_2-3\,x_3\ [/mm] =\ -20$

Möglicherweise hast du uns einen Teil der Aufgabenstellung verschwiegen ...


LG    Al-Chw.

Bezug
                
Bezug
Koordinatenform Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:13 Mo 03.05.2010
Autor: omarco

Ja stimmt sie haben recht. Wir sollten zeigen, dass die Gerade parallel zur Ebene liegt.

Aber wie kann man aus einer einfach Gerade (wie die, die in meiner ersten Frage angegeben ist) in Koordinatenfrom darstellen ?

Bezug
                        
Bezug
Koordinatenform Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 22:28 Mo 03.05.2010
Autor: abakus


> Ja stimmt sie haben recht. Wir sollten zeigen, dass die
> Gerade parallel zur Ebene liegt.
>
> Aber wie kann man aus einer einfach Gerade (wie die, die in
> meiner ersten Frage angegeben ist) in Koordinatenfrom
> darstellen ?

Man kann eine Gerade im Raum nicht in Koordinatenform angeben.


Bezug
                                
Bezug
Koordinatenform Gerade: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:28 Mo 03.05.2010
Autor: Al-Chwarizmi


> Man kann eine Gerade im Raum nicht in Koordinatenform
> angeben.


Kann man eigentlich schon, nur ist die resultierende Gleichung
nicht einfach eine (einzige) lineare Gleichung, sondern z.B.
ein System aus 2 linearen Gleichungen oder eine quadratische
Gleichung in den Variablen x, y und z .

Man kann zum Beispiel die x-Achse des Koordinatensystems
durch die Gleichung

       [mm] y^2+z^2=0 [/mm]

beschreiben.


LG     Al-Chw.  


Bezug
                        
Bezug
Koordinatenform Gerade: Parallelität
Status: (Antwort) fertig Status 
Datum: 23:17 Mo 03.05.2010
Autor: Loddar

Hall omarco!


Wie bereits geschrieben: eine Ebene bliebt eine Ebene, und eine Gerade eine Gerade.

Um die Parallelität von Gerade und Ebene nachzuweisen, kann man zeigen, dass der Normalenvektor der Ebene und der Richtungsvektor der Gerade senkrecht zueinander stehen (Stichwort: MBSkalarprodukt).


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de