www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Koordinatengeometrie
Koordinatengeometrie < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatengeometrie: Dreieck
Status: (Frage) beantwortet Status 
Datum: 17:45 Mo 13.12.2004
Autor: mc_plectrum

guten abend,
Ich brauche mal wieder die Hilfe bei einem Aufgabenteil:
Ein Dreieck ABC ist durch die Gleichungen seiner Seiten gegeben.
AD: y=x-2; BC: y=-x/2+7; CA: y=3x
Daraus habe ich die Eckpunkte berechnet:
A(-1/-3);B(6/4);C(2/6)
Wie berechne ich jetzt daraus den Schnittpunkt der Höhengeraden, den Schnittpunkt S der Seitenhalbierenden und den Schnittpunkt M der Mittelsenkrechten seiner Seiten???





        
Bezug
Koordinatengeometrie: Ansätze
Status: (Antwort) fertig Status 
Datum: 18:36 Mo 13.12.2004
Autor: Loddar

N'Abend Mc_Plectrum,

> guten abend,
>  Ich brauche mal wieder die Hilfe bei einem Aufgabenteil:
>  Ein Dreieck ABC ist durch die Gleichungen seiner Seiten
> gegeben.
>  AD: y=x-2; BC: y=-x/2+7; CA: y=3x
>  Daraus habe ich die Eckpunkte berechnet:
>  A(-1/-3);B(6/4);C(2/6)
>  Wie berechne ich jetzt daraus den Schnittpunkt der
> Höhengeraden, den Schnittpunkt S der Seitenhalbierenden und
> den Schnittpunkt M der Mittelsenkrechten seiner Seiten???

Es gibt vielleicht auch elegantere Wege als die folgenden.
Aber diese führen auch auf jeden Fall zum Ziel.

1. Ermittlung der Geradengleichung für die Höhengeraden:
Beispiel [mm] $h_C [/mm] = [mm] m_C*x [/mm] + n$
Gegeben ist ein Punkt (hier Punkt C) sowie die Steigung der Höhengerade.
Denn wir wissen, daß [mm] $h_C$ [/mm] senkrecht auf der Geraden [mm] $g_{AB}$ [/mm] stehen muß.
Dafür muß gelten: [mm] $m_C [/mm] * [mm] m_{AB} [/mm] = -1$.

[mm] $m_{AB}$ [/mm] ist ja gegeben und mit der Punkt-Steigungs-Form erhalte ich [mm] $h_C$. [/mm]
So kann ich alle drei Höhengeraden ermitteln und daraus den Schnittpunkt.


2. Ermittlung der Geradengleichung für die Seitenhalbierenden:
Beispiel [mm] $s_C [/mm] = [mm] m_C*x [/mm] + n$
Aus den beiden gegenüberliegenden Punkten (hier: A + B) kann ich den Schnittpunkt der Seitenhalbierenden [mm] $s_C$ [/mm] mit der Geraden [mm] $g_{AB}$ [/mm] ermitteln.
Dann mit der 2-Punkte-Form die Geradengleichung für [mm] $s_C$. [/mm]
Analog die anderen beiden Seitenhalbierenden und dann den Schnittpunkt S.


2. Ermittlung der Geradengleichung für die Mittelsenkrechten:
Die Ermittlung der Geradengleichung für die Mittelsenkrechten (z.B. [mm] $n_C$) [/mm] ist eine Kombination aus Teilaufgabe (1) und (2).
Wir müssen die "Halbpunkte" der Seiten ermitteln (die wir ja bereit in (2) ermittelt haben) sowie die Steigungen, die wir bereits aus (1) kennen.
Wiederum Punkt-Steigungs-Form dreimal verwenden und anschließend den Schnittpunkt M.


Grüße Loddar

Bezug
        
Bezug
Koordinatengeometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 22:15 Sa 25.12.2004
Autor: riwe

alles für die seite c:
[mm] h_c: [/mm] gerade geht durch den Punkt C(2/6) und steht senkrecht auf c  [mm] \Rightarrow [/mm]
k= - [mm] \bruch{1}{k_c}=1, [/mm] y=-x+8
der mittelpunkt der seite c hat die koordinaten
[mm] M_c=(A [/mm] + B)/2 => [mm] M_c(5/2, [/mm] 1/2)
die schwerelinie erhält man indem man C mit [mm] M_c [/mm] verbindet,
die mittelsenkrechte indem du durch [mm] M_c [/mm] eine gerade senkrecht zu c (k = -1, wie oben) legst,
alles mal zwei und schneiden
gruß
riwe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de