www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Koordinatenmatrizen
Koordinatenmatrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatenmatrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:12 Do 13.04.2006
Autor: fussel1000

Aufgabe
Es sei [mm] w=e_{1}+ e_{2} \in V_{3}(R) [/mm] . Ferner seien
P,Q,S [mm] \in L(V_{3}(R)) [/mm] durch
P(u)=  [mm] \bruch{(u,w)}{(w,w)}w [/mm] , Q=I-P, S=I-2P
definiert. Man bestimmen die Koordinatenmatrizen
[mm] [P]_{G}^{H} [/mm] , [mm] [Q]_{G}^{H} [/mm] , [mm] [S]_{G}^{H} [/mm]
bezüglich der Basen G = H :  [mm] e_{1},e_{2},e_{3} [/mm] .

Hallo,
also bei [mm] [P]_{G}^{H} [/mm] hab ich so angefangen, dass ich erstmal
die Bilder der Basisvektoren bestimmt habe, also [mm] P(e_{1}), [/mm] P(e2), P(e3)
und diese dann in eine Matrix spaltenweise geschrieben habe, also
wäre dann
[mm] [P]_{G}^{H} [/mm] =  [mm] \pmat{ \bruch{1}{2} & \bruch{1}{2} & 0 \\ \bruch{-1}{2} & \bruch{1}{2} & 0 \\ 0 & 0 & 0 } [/mm]

Wollte mal fragen ob das so stimmt?

bei der 2. Matrix Q müsste man dann doch auch wieder die Bilder der Basisvektoren berehcnen
Also [mm] Q(e_{1}) [/mm] = [mm] e_{1}-P(e_{1}) [/mm] mit allen 3 Basisvektoren und dann
genau wie oben die Matrix aufstellen?

Vielen Dank für Hilfe.


        
Bezug
Koordinatenmatrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:27 Do 13.04.2006
Autor: DaMenge

Hallo,


>  die Bilder der Basisvektoren bestimmt habe, also [mm]P(e_{1}),[/mm]
> P(e2), P(e3)
> und diese dann in eine Matrix spaltenweise geschrieben
> habe, also
>  wäre dann
> [mm][P]_{G}^{H}[/mm] =  [mm]\pmat{ \bruch{1}{2} & \bruch{1}{2} & 0 \\ \bruch{-1}{2} & \bruch{1}{2} & 0 \\ 0 & 0 & 0 }[/mm]
>  
> Wollte mal fragen ob das so stimmt?


Also die Vorgehensweise ist richtig, aber aber ich bekomme P(e1)=P(e2) raus, denn (e1,w)=(e2,w)=1 - also ich versteh nicht, woher das Minuszeichen kommt
(evtl nur ein Tippo ?)

>
> bei der 2. Matrix Q müsste man dann doch auch wieder die
> Bilder der Basisvektoren berehcnen
> Also [mm]Q(e_{1})[/mm] = [mm]e_{1}-P(e_{1})[/mm] mit allen 3 Basisvektoren
> und dann
> genau wie oben die Matrix aufstellen?

Ja ganz genau - dein Ansatz ist der richtige und sollte dich auch zum Ergebnis führen.

viele Grüße + frohe Ostern
DaMenge

Bezug
                
Bezug
Koordinatenmatrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:29 Do 13.04.2006
Autor: fussel1000

Hallo,
Danke, war tatsächlich nur ein Tippfehler :)
Frohe Ostern und viele Grüße
Fussel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de