www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Korrekte Umformung
Korrekte Umformung < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Korrekte Umformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:35 Di 22.05.2012
Autor: Charlie22

Aufgabe
f(x) = log (x) zu einer unbekannten Basis

g(x) .. exponentiell zu einer unbekannten Basis

Ich hätte zwei Fragen dazu: Und zwar, wie kann ich es korrekt anschreiben, wenn ich die Basis nicht weiß? Oder einfach eine Variable für die Basis nehmen und diese einsetzen? Wenn ja, wohin?

Und zweitens: Wie kann ich dann aus diesen Formeln das x ausdrücken?

Vielen Dank im Voraus, das alles ist leider schon länger her und ich komm einfach nicht mehr dahinter..

        
Bezug
Korrekte Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 Di 22.05.2012
Autor: Blech


> weiß? Oder einfach eine Variable für die Basis nehmen und diese einsetzen?

Ja.

[mm] $f(x)=\log_b(x)$ [/mm]
[mm] $g(x)=b^x$ [/mm]

Du kannst f und g auch noch als [mm] $f_b$ [/mm] und [mm] $g_b$ [/mm] schreiben, wenn Du klarmachen willst, daß sie einen Parameter brauchen.

> Wenn ja, wohin?

???

> Und zweitens: Wie kann ich dann aus diesen Formeln das x ausdrücken?

[mm] $\log_b(x)$ [/mm] ist die Umkehrfunktion von [mm] $b^x$ [/mm] und umgekehrt:

$x = [mm] \log_b\left(b^x\right) [/mm] = [mm] b^{\log_b(x)}$ [/mm]

ciao
Stefan

Bezug
                
Bezug
Korrekte Umformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:11 Di 22.05.2012
Autor: Charlie22

Ok, vielen vielen Dank! Auf die Darstellung bin ich mittlerweile draufgekommen, aber beim x ausdrücken hatte ich einen Fehler. Also danke nochmals!

Bezug
                
Bezug
Korrekte Umformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:54 Di 22.05.2012
Autor: Charlie22

$ [mm] g(x)=b^x [/mm] $

$ [mm] f(x)=\log_b(x) [/mm] $

So, ich habe jetzt statt g(x) und statt f(x) L eingesetzt.

Ist es korrekt wenn ich daher für  [mm] $L=b^x [/mm] $ [mm] $x=\bruch{log(L)}{log(b)}$ [/mm] erhalte und für $ [mm] L=\log_b(x) [/mm] $ [mm] $x=b^L$ [/mm] ? Ich hoffe ich habe es richtig verstanden :)

Und wären die Ableitungen für $f'(x)$ [mm] $\bruch{1}{x}*log(b)$ [/mm] und für $g'(x)$ [mm] $b^x*log(b)$ [/mm] ?

Ich hoffe ich habe mich nicht zu sehr vertan, bin mir hier sehr unsicher gerade..

Bezug
                        
Bezug
Korrekte Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Di 22.05.2012
Autor: MathePower

Hallo Charlie22,

> [mm]g(x)=b^x[/mm]
>
> [mm]f(x)=\log_b(x)[/mm]
>  
> So, ich habe jetzt statt g(x) und statt f(x) L eingesetzt.
>  
> Ist es korrekt wenn ich daher für  [mm]L=b^x[/mm]
> [mm]x=\bruch{log(L)}{log(b)}[/mm] erhalte und für [mm]L=\log_b(x)[/mm] [mm]x=b^L[/mm]
> ? Ich hoffe ich habe es richtig verstanden :)
>  


Ja, das hast Du richtig verstanden.


> Und wären die Ableitungen für [mm]f'(x)[/mm] [mm]\bruch{1}{x}*log(b)[/mm]
> und für [mm]g'(x)[/mm] [mm]b^x*log(b)[/mm] ?
>


Das log(b) bei f'(x) gehört mit unter den Bruchstrich:

[mm]f'\left(x\right)=\bruch{1}{x*log\left(b\right)}[/mm]

g'(x) ist richtig.


> Ich hoffe ich habe mich nicht zu sehr vertan, bin mir hier
> sehr unsicher gerade..


Gruss
MathePower

Bezug
                                
Bezug
Korrekte Umformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:27 Di 22.05.2012
Autor: Charlie22

Ich hatte es vorher unterm Bruchstrich, habe es aber dann wieder rausgetan, weil ich mir nicht sicher war.. - also herzlichen Dank für die Korrektur und fürs Anschauen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de