www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ökonomische Funktionen" - Kosten- und Erlösfunktionen
Kosten- und Erlösfunktionen < Ökonomische Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kosten- und Erlösfunktionen: Tipp und Vereinfachung
Status: (Frage) beantwortet Status 
Datum: 12:25 Mi 08.03.2017
Autor: NiBiVat289

Aufgabe
Die Kosten eines Betriebes hängen nur von der Produktionsmenge x ab. Sie setzen sich aus den variablen Kosten V(x) = x³ - 105x² + 3676x und den Fixkosten K(0) = 3500 zusammen.
Der Erlös hängt ebenfalls nur von den Produktionseinheiten ab und beträgt 1719,75 PE.
1) In welchen Produktionsbereichen entwickeln sich die Kosten über- bzw. unterproportional?
2) Zeichne den Graphen der Erlösfunktion und ermittle die Nutzengrenze zeichnerisch. Berechne die Nutzenschwelle.
3) Bei welcher Menge wird der maximale Gewinn erzielt? Wie hoch ist dieser?
4) Skizziere den Graphen der Gewinnfunktion.

Hallo.
Ich helfe einem Freund beim Verstehen der obigen Aufgabe.
Ich wünsche mir nicht unbedingt eine vollständige Lösung (wer mag, darf trotzdem^^), sondern eher eine Vereinfachung der Verständlichkeit,
z.B. "bei 1a) muss der Wendepunkt berechnet werden" oder Ähnliches.
Ich danke Euch!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kosten- und Erlösfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Mi 08.03.2017
Autor: moody

Hallo und [willkommenmr]

möchtest du vielleicht vormachen was du bisher hast und wir schauen drüber? Das wäre doch ein Deal ;)

lg moody

Bezug
        
Bezug
Kosten- und Erlösfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:02 Mi 08.03.2017
Autor: Diophant

Hallo,

vorneweg: optimal ist deine Vorgehensweise nicht, dein Freund könnte die Frage immerhin selbst einstellen?

> Die Kosten eines Betriebes hängen nur von der
> Produktionsmenge x ab. Sie setzen sich aus den variablen
> Kosten V(x) = x³ - 105x² + 3676x und den Fixkosten K(0) =
> 3500 zusammen.
> Der Erlös hängt ebenfalls nur von den
> Produktionseinheiten ab und beträgt 1719,75 PE.
> 1) In welchen Produktionsbereichen entwickeln sich die
> Kosten über- bzw. unterproportional?

Nachrechnen, wo die 1. Ableitung größer bzw. kleiner 1 ist (da kommt als Grenze eine schöne ganzzahlige Lösung heraus).

> 2) Zeichne den Graphen der Erlösfunktion und ermittle die
> Nutzengrenze zeichnerisch. Berechne die Nutzenschwelle.

Nutzenschwelle und -grenze sind die Schnittpunkte von Erlös- und Kostenfunktion.

> 3) Bei welcher Menge wird der maximale Gewinn erzielt? Wie
> hoch ist dieser?

Gewinn=Erlös minus Kosten. Damit eine Funkton für den Gewinn in Abhängigkeit von x berechnen und für diese das Maximum auf dem üblichen Weg.

> 4) Skizziere den Graphen der Gewinnfunktion.

Frage 4) ist jetzt nicht euer Ernst?


Gruß, Diophant

Bezug
                
Bezug
Kosten- und Erlösfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:38 Do 09.03.2017
Autor: NiBiVat289

Hallo und vielen Dank für die Antwort. Die Skizzenaufgabe habe ich nur der Vollständigkeit halber aufgeschrieben, das schaffen wir natürlich :-)

Ich würde mich freuen, wenn Du/Ihr mir bei der 1. Aufgabe genauer helfen könntest/könntet. Die Ableitung der Kostenfunktion K(x) ist:
K'(x) = [mm] 3x^2 [/mm] - 210x + 3676

Warum muss sie kleiner/größer 1 sein und wie löse ich das?

Ich ging in erster Linie davon aus, die Nullstellen der Kostenfunktion zu bestimmen, um eine Aussage über die Kostenentwicklung zu machen.

Vielen Dank für Deine/Eure Zeit!

Bezug
                        
Bezug
Kosten- und Erlösfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:10 Do 09.03.2017
Autor: Diophant

Hallo,

> Hallo und vielen Dank für die Antwort. Die Skizzenaufgabe
> habe ich nur der Vollständigkeit halber aufgeschrieben,
> das schaffen wir natürlich :-)

>

> Ich würde mich freuen, wenn Du/Ihr mir bei der 1. Aufgabe
> genauer helfen könntest/könntet. Die Ableitung der
> Kostenfunktion K(x) ist:
> K'(x) = [mm]3x^2[/mm] - 210x + 3676

>

> Warum muss sie kleiner/größer 1 sein und wie löse ich
> das?

An dieser Stelle muss ich gestehen, war meine gestrige Idee falsch. Aber ich möchte schon auch den Spieß umdrehen und euch dazu auffordern, selbst aktiver zu werden.

Was bedeutet denn das Wort 'proportional'? Und zu was setzt man wohl zweckmäßigerweise die Kostenänderung ins Verhältnis? Da braucht man eigentlich keine mathematischen Kenntnisse dazu, es reicht der gesunde Menschenverstand.

> Ich ging in erster Linie davon aus, die Nullstellen der
> Kostenfunktion zu bestimmen, um eine Aussage über die
> Kostenentwicklung zu machen.

Hm. Wenn deine Kostenfunktion im betrachteten Bereich (positive x-Achse) Nullstellen hätte, dann wäre das ökonomisch gesehen ein echter Knaller (dafür würdest du bei nächster Gelegenheit den Nobelpreis verliehen bekommen. Mache dir klar, warum!).

Die Kostenfunkton könnte ja theoretisch auch proportional zur Außentemperatur oder etwas in der Art sein. Sinn ergibt aber ein Vergleich mit der gefertigten Stückzahl x, denn wenn man darüber eine Aussage trifft, hilft das bei der Entscheidung, ob es in einer bestimmten Marktsituation Sinn macht, die Fertigungszahlen zu ändern.

Ich habe jetzt gerade nochmal []nachgeschaut. Man nennt eine Kostenfunktion überproportional bzw. progressiv, wenn sie linksgekrümmt ist und entsprechend unterpropiortional bzw. degressiv, wenn sie rechtsgekrümmt ist. Wenn die Krümmung verschwindet, dann verläuft die Funktion gerade und ändert sich somit proportional zur Änderung der Stückzahl.

Also gilt es, mit Hilfe der zweiten Ableitung die Bereiche der Kostenfunktion mit Rechts- bzw. Linkskrümmung zu ermitteln.

Und vor der nächsten Rückfrage schaut ihr euch bitte eure Unterlagen durch und versucht euch selbst an einem Ansatz, den ihr dann hier präsentieren könnt. Dann können wir im Gegenzug zielführendere Hilfestellung leisten.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de