www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ökonomische Funktionen" - Kostenfunktion
Kostenfunktion < Ökonomische Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kostenfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:02 Sa 30.06.2007
Autor: mustang.gt500

Hey leute,

ich hab hier folgende Kostenfunktion[mm] K(x)=0,05x^3-100x^2+44025x [/mm]. Möchte nun herausfinden für welche Anzahl x die Stückkosten minimal sind.

Die Formel für Stückkosten ist meiner Meinung nach [mm] k(x) = K(x)/x [/mm].
Naja und dann halt alles einsetzen: [mm] k(x)=(0,05x^3-100x^2+44025x)/x[/mm]
Dann hab ich das ganze durch x geteilt: [mm] k(x)=0,05x^2-100x+44025 [/mm].
Zu guter letzt hab ich k(x) Abgeleitet: [mm] k' (x) = 0,1x-100 [/mm]

Und bekomm dann als Ergebniss x = 1000. Also sind die Stückkosten bei einer Anzahl von  1000 Mengeneinheiten minimal.

Meine Frage ist eigentlich nur ob das so richtig ist wie ich das hier gerechnet hab. ich bin  mir nämlich mit dem durch x teilen nicht ganz sicher. Hoffe und freue mich auf eine Antwort.


Gruß mustang

        
Bezug
Kostenfunktion: okay
Status: (Antwort) fertig Status 
Datum: 15:08 Sa 30.06.2007
Autor: Loddar

Hallo Mustang!

Alles okay [ok] !


Gruß
Loddar


Bezug
                
Bezug
Kostenfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:58 So 01.07.2007
Autor: mustang.gt500

Gut. Danke fürs Kontrollieren!


Gruß mustang

Bezug
        
Bezug
Kostenfunktion: alternativer Ansatz
Status: (Antwort) fertig Status 
Datum: 20:05 So 01.07.2007
Autor: Analytiker

Hi mustang,

> ich hab hier folgende Kostenfunktion[mm] K(x)=0,05x^3-100x^2+44025x [/mm].
> Möchte nun herausfinden für welche Anzahl x die Stückkosten minimal sind.

Man könnte die Aufgabe alternativ auch noch folgendermaßen lösen:

Annahme: Das Minimum der k(x) ist der Schnittpunkt mit den Grenzkosten K'(x)

würde dann so aussehen -> K'(x) = [mm] 0,15x^{2} [/mm] - 200x + 44025 -> K'(x) = k(x) -> [mm] 0,15x^{2} [/mm] - 200x + 44025 = [mm] 0,05x^{2} [/mm] - 100x + 22025 -> [mm] 0,1x^{2} [/mm] = 100x -> x = 1000

Liebe Grüße
Analytiker
[lehrer]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de