www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Kovarianz
Kovarianz < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kovarianz: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 14:15 Fr 06.06.2008
Autor: Nette20

Aufgabe
Sei [mm] (\Omega', \wp(\Omega'),P') [/mm] ein diskreter W'raum und X,Y: [mm] \Omega' [/mm] -> [mm] \Omega [/mm] zwei unabhängige ZVn mit gleicher Verteilung [mm] P=P_X'=P'_Y. [/mm] Seien [mm] f,g:\Omega [/mm] -> [mm] \IR [/mm] zwei ZVn mit
[mm] E_P[f], E_P[g], E_P[f^2], E_P[g^2] [/mm] < [mm] \infty [/mm]

Zeige:
[mm] Cov_P(f,g) [/mm] = [mm] \bruch{1}{2} E_{P'}[(f(X)-f(Y))(g(X)-g(Y))] [/mm]  

Hallo!

Kann mir jemand weiterhelfen?

Wenn ich anfange die rechte Seite auszumultiplizieren, dann bekomme ich:

(f(X) - f(Y))*(g(X) - g(Y))
= f(X)g(X) - f(X)g(Y) - f(Y)g(X) + f(Y)g(Y)
= [mm] E_P(fg) [/mm] - f(X)g(Y) - f(Y)g(X) + [mm] E_P(fg) [/mm]
= [mm] 2E_P(fg) [/mm] - [mm] E_{P'}(f(X)g(Y)) [/mm] - [mm] E_{P'}(f(Y)g(X)) [/mm]

mit [mm] \bruch{1}{2} [/mm] multipliziert:

[mm] E_P(fg) [/mm] - [mm] \bruch{1}{2}E_{P'}(f(X)g(Y)) [/mm] - [mm] \bruch{1}{2}E_{P'}(f(Y)g(X)) [/mm]

Jetzt verließen sie mich. Wie kann ich diesen Term denn weiter zusammenfassen?


Allgemein gilt ja:
cov(X,Y) = E((X-E(X))(Y-E(Y))

Wie ändere ich denn diese allgemeine Variante ab, um sie für meine Aufgabe nutzen zu können?

Vielen Dank!
Janett

        
Bezug
Kovarianz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:55 Fr 06.06.2008
Autor: Somebody


> Sei [mm](\Omega', \wp(\Omega'),P')[/mm] ein diskreter W'raum und
> X,Y: [mm]\Omega'[/mm] -> [mm]\Omega[/mm] zwei unabhängige ZVn mit gleicher
> Verteilung [mm]P=P_X'=P'_Y.[/mm] Seien [mm]f,g:\Omega[/mm] -> [mm]\IR[/mm] zwei ZVn
> mit
>  [mm]E_P[f], E_P[g], E_P[f^2], E_P[g^2][/mm] < [mm]\infty[/mm]
>  
> Zeige:
>  [mm]Cov_P(f,g)[/mm] = [mm]\bruch{1}{2} E_{P'}[(f(X)-f(Y))(g(X)-g(Y))][/mm]  
> Hallo!
>  
> Kann mir jemand weiterhelfen?
>  
> Wenn ich anfange die rechte Seite auszumultiplizieren, dann
> bekomme ich:
>  
> (f(X) - f(Y))*(g(X) - g(Y))
>  = f(X)g(X) - f(X)g(Y) - f(Y)g(X) + f(Y)g(Y)
>  = [mm]E_P(fg)[/mm] - f(X)g(Y) - f(Y)g(X) + [mm]E_P(fg)[/mm]
>  = [mm]2E_P(fg)[/mm] - [mm]E_{P'}(f(X)g(Y))[/mm] - [mm]E_{P'}(f(Y)g(X))[/mm]
>  
> mit [mm]\bruch{1}{2}[/mm] multipliziert:
>  
> [mm]E_P(fg)[/mm] - [mm]\bruch{1}{2}E_{P'}(f(X)g(Y))[/mm] -
> [mm]\bruch{1}{2}E_{P'}(f(Y)g(X))[/mm]
>  
> Jetzt verließen sie mich. Wie kann ich diesen Term denn
> weiter zusammenfassen?

Was Du gar nicht verwendet hast ist die Unabhängigkeit von $X$ und $Y$. In diesem Falle sind doch auch $f(X)$ und $g(Y)$ bzw. $f(Y)$ und $g(X)$ voneinander unabhängig (nicht aber $f(X)$ und $g(X)$ oder $f(Y)$ und $g(Y)$). Das heisst: Du kannst in diesen Fällen den Erwartungswert des Produktes, z.B. [mm] $E_{P'}[f(X)g(Y)]$, [/mm] zum Produkt der Erwartungswerte [mm] $E_{P'}[f(X)]\cdot E_{P'}[g(Y)]$ [/mm] umformen usw.

>  
>
> Allgemein gilt ja:
>  cov(X,Y) = E((X-E(X))(Y-E(Y))

Richtig, oder eben [mm] $cov(f,g)=E[(f-E[f])(g-E[g])]=E[fg]-E[f]\cdot [/mm] E[g]$

>  
> Wie ändere ich denn diese allgemeine Variante ab, um sie
> für meine Aufgabe nutzen zu können?

Du warst schon auf dem richtigen Weg, nur musst Du, wie gesagt, Unabhängigkeit verwenden, um gewisse Erwartungswerte von Produkten in Produkte von Erwartungswerten umformen zu können.

Bezug
                
Bezug
Kovarianz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Fr 06.06.2008
Autor: Nette20

HI somebody.
Danke für Deinen Tip.

(f(X) - f(Y))*(g(X) - g(Y))
= f(X)g(X) - f(X)g(Y) - f(Y)g(X) + f(Y)g(Y)
= [mm] E_P[fg] [/mm] - f(X)g(Y) - f(Y)g(X) + [mm] E_P(fg) [/mm]
= [mm] 2E_P[fg] [/mm] - [mm] E_{P'}[f(X)g(Y)] [/mm] - [mm] E_{P'}[f(Y)g(X)] [/mm]

mit [mm] \bruch{1}{2} [/mm] multipliziert:

[mm] E_P[fg] [/mm] - [mm] \bruch{1}{2}E_{P'}[f(X)g(Y)] [/mm] - [mm] \bruch{1}{2}E_{P'}[f(Y)g(X)] [/mm]  
=  [mm] E_P[fg] [/mm] - [mm] \bruch{1}{2}E_{P'}[f(X)]*E_{P'}[g(Y)] [/mm] - [mm] \bruch{1}{2}E_{P'}[f(Y)]*E_{P'}[g(X)] [/mm]
= [mm] E_P[fg] [/mm] - [mm] \bruch{1}{2}E_P[f]*E_P[g] [/mm] - [mm] \bruch{1}{2}E_P[f]*E_P[g] [/mm]
= [mm] E_P[fg] [/mm] - [mm] E_P[f]*E_P[g] [/mm]
= [mm] E_P[fg] [/mm] - [mm] E_P[fg] [/mm]
= 0

hmmm. Das ist ja offensichtlich falsch.

Danke für Eure Tipps.

***edit***
Ahhhh. Habe meinen Fehler selbst entdeckt.
Ich kann [mm] E_P[f]*E_P[g] [/mm] nicht zu [mm] E_P[fg] [/mm] zusammenfassen.
...
= [mm] E_P[fg] [/mm] - [mm] E_P[f]*E_P[g] [/mm]
= cov(f,g)

Richtig??

Janett

Bezug
                        
Bezug
Kovarianz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Fr 06.06.2008
Autor: Somebody


> HI somebody.
>  Danke für Deinen Tip.
>  
> (f(X) - f(Y))*(g(X) - g(Y))
>  = f(X)g(X) - f(X)g(Y) - f(Y)g(X) + f(Y)g(Y)
>  = [mm]E_P[fg][/mm] - f(X)g(Y) - f(Y)g(X) + [mm]E_P(fg)[/mm]
>  = [mm]2E_P[fg][/mm] - [mm]E_{P'}[f(X)g(Y)][/mm] - [mm]E_{P'}[f(Y)g(X)][/mm]
>  
> mit [mm]\bruch{1}{2}[/mm] multipliziert:
>  
> [mm]E_P[fg][/mm] - [mm]\bruch{1}{2}E_{P'}[f(X)g(Y)][/mm] -
> [mm]\bruch{1}{2}E_{P'}[f(Y)g(X)][/mm]  
> =  [mm]E_P[fg][/mm] - [mm]\bruch{1}{2}E_{P'}[f(X)]*E_{P'}[g(Y)][/mm] -
> [mm]\bruch{1}{2}E_{P'}[f(Y)]*E_{P'}[g(X)][/mm]
>  = [mm]E_P[fg][/mm] - [mm]\bruch{1}{2}E_P[f]*E_P[g][/mm] -
> [mm]\bruch{1}{2}E_P[f]*E_P[g][/mm]
>  = [mm]E_P[fg][/mm] - [mm]E_P[f]*E_P[g][/mm]

[ok] und wie ich geschrieben hatte ist dies gleich [mm] $\mathrm{cov}(f,g)$, [/mm] was zu zeigen war.

>  = [mm]E_P[fg][/mm] - [mm]E_P[fg][/mm]

[notok] Denn es ist in der Regel [mm] $E_P[f]\cdot E_P[g]\neq E_P[fg]$ [/mm]


Bezug
                        
Bezug
Kovarianz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Fr 06.06.2008
Autor: Somebody


> HI somebody.
>  Danke für Deinen Tip.
>  
> (f(X) - f(Y))*(g(X) - g(Y))
>  = f(X)g(X) - f(X)g(Y) - f(Y)g(X) + f(Y)g(Y)
>  = [mm]E_P[fg][/mm] - f(X)g(Y) - f(Y)g(X) + [mm]E_P(fg)[/mm]
>  = [mm]2E_P[fg][/mm] - [mm]E_{P'}[f(X)g(Y)][/mm] - [mm]E_{P'}[f(Y)g(X)][/mm]
>  
> mit [mm]\bruch{1}{2}[/mm] multipliziert:
>  
> [mm]E_P[fg][/mm] - [mm]\bruch{1}{2}E_{P'}[f(X)g(Y)][/mm] -
> [mm]\bruch{1}{2}E_{P'}[f(Y)g(X)][/mm]  
> =  [mm]E_P[fg][/mm] - [mm]\bruch{1}{2}E_{P'}[f(X)]*E_{P'}[g(Y)][/mm] -
> [mm]\bruch{1}{2}E_{P'}[f(Y)]*E_{P'}[g(X)][/mm]
>  = [mm]E_P[fg][/mm] - [mm]\bruch{1}{2}E_P[f]*E_P[g][/mm] -
> [mm]\bruch{1}{2}E_P[f]*E_P[g][/mm]
>  = [mm]E_P[fg][/mm] - [mm]E_P[f]*E_P[g][/mm]
>  = [mm]E_P[fg][/mm] - [mm]E_P[fg][/mm]
>  = 0
>  
> hmmm. Das ist ja offensichtlich falsch.
>  
> Danke für Eure Tipps.
>  
> ***edit***
>  Ahhhh. Habe meinen Fehler selbst entdeckt.
>  Ich kann [mm]E_P[f]*E_P[g][/mm] nicht zu [mm]E_P[fg][/mm] zusammenfassen.

ja eben: Ich hatte geschrieben, dass aus der Unabhängigkeit von $X$ und $Y$ die Unabhängigkeit von $f(X)$ und $g(Y)$ folge und daher [mm] $E[f(X)\cdot g(Y)]=E[f(X)]\cdot E[g(Y)]=E[f]\cdot [/mm] E[g]$ gelte.

Aber Du kannst nicht annehmen, dass $f(X)$ und $g(X)$ unabhängig sind. Daher darfst Du auch nicht annehmen, dass [mm] $E[f\cdot g]=E[f(X)\cdot g(X)]\overset{?!}{=}E[f(X)]\cdot E[g(X)]=E[f]\cdot [/mm] E[g]$ gilt. Aus diesem Grund war der letzte Schritt, der Dich dann zu $=0$ geführt hat, unzulässig.


>  ...
>  = [mm]E_P[fg][/mm] - [mm]E_P[f]*E_P[g][/mm]
>  = cov(f,g)
>  
> Richtig??

ja, meiner unmassgeblichen Meinung nach schon. Aber das Wichtigste ist, dass Du selbst davon überzeugt bist ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de