www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Kovarianz Normalverteilung
Kovarianz Normalverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kovarianz Normalverteilung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 01:11 Do 20.12.2007
Autor: KarlOttoBerlin

Aufgabe
A und B sind standardnormalverteilt und unabhängig. Gesucht ist die Kovarianz von A und A + B.

Was ist A + B? Ist das eine simple Addition wegen der Unabhängigkeit oder muss ich die bedingte Funktion da noch reinbringen oder ist es
[mm] \bruch{1}{2Pi}exp -(a^2+b^2). [/mm]
Ich hoffe, Ihr könnt mir helfen... und tut mir leid wegen dem Zeitdruck ;-(

ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kovarianz Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:07 Do 20.12.2007
Autor: Zorba

Du musst zuerst die Verteilung von A+B und die von A(A+B) berechnen, das muss in beiden Fällen nicht unbedingt die Standardnormalverteilung sein(ist aber möglich)
Dann nimmst du die Formel für die Kovarianz und setzt dort die Erwartungswerte der jeweiligen Verteilung ein.
Also: Kov(A,A+B)= E(A(A+B)) - E(A)E(A+B)
Hier nun die Erwartungswerte der jeweiligen Verteilung einsetzen.

Bezug
                
Bezug
Kovarianz Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:00 Do 20.12.2007
Autor: KarlOttoBerlin

Um ehrlich zu sein, die theoretische Vorgehensweise ist mir jetzt schon klar. Bei mir scheitert es leider an deinem ersten Satz: Wie kann ich denn A(A+B) und A+B berechnen?

Bezug
                        
Bezug
Kovarianz Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 Do 20.12.2007
Autor: Somebody


> Um ehrlich zu sein, die theoretische Vorgehensweise ist mir
> jetzt schon klar. Bei mir scheitert es leider an deinem
> ersten Satz: Wie kann ich denn A(A+B) und A+B berechnen?

Du musst ja nicht direkt diese Zufallsvariablen "berechnen", sondern etwa $E(A+B)$. Wegen der Linearität des Erwartungswertes ist $E(A+B)=E(A)+E(B)$.
Dann musst Du noch $E(A(A+B))$ berechnen. Dies ist gleich [mm] $E(A^2+AB)$. [/mm] Wegen der Unabhängigkeit von $A$ und $B$ ist aber [mm] $E(AB)=E(A)\cdot [/mm] E(B)$.
Und nun benutzt Du einfach, dass Du die Verteilung von $A$ und $B$ kennst, insbesondere also $E(A)$, $E(B)$ und [mm] $\mathrm{var}(A)=E(A^2)-E(A)^2$. [/mm]

Bezug
        
Bezug
Kovarianz Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:17 Do 20.12.2007
Autor: luis52

Moin KarlOttoBerlin,

[willkommenmr]

Nutze doch die alte Bauernregel: [mm] $\operatorname{Cov}[A,A+B]=\operatorname{Cov}[A,A]+\operatorname{Cov}[A,B]=\operatorname{Var}[A]=1$. [/mm]

vg Luis

Bezug
                
Bezug
Kovarianz Normalverteilung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:01 Do 20.12.2007
Autor: KarlOttoBerlin

Vielen, vielen Dank für diese "Bauernregel". Hast du einen Link, wo sie hergeleitet wird... würde mich interessieren...
Beste Grüße

Bezug
                        
Bezug
Kovarianz Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:21 Do 20.12.2007
Autor: luis52


> Hast du einen
> Link, wo sie hergeleitet wird... würde mich
> interessieren...


Das kann man schnell linklos einsehen: Seien $X,Y,Z$ Zufallsvariablen mit
[mm] $\operatorname{E}[X]= \operatorname{E}[Y]= \operatorname{E}[Z]= [/mm] 0$ (Das ist keine Einschraenkung, wie man sich leicht
ueberlegt und trifft auf deinen Fall ohnehin zu). Dann ist

[mm] $\operatorname{Cov}[X,Y+Z]=\operatorname{E}[X(Y+Z)]= \operatorname{E}[XY+XZ]= \operatorname{E}[XY]+\operatorname{E}[XY]= \operatorname{Cov}[X,Y]+\operatorname{Cov}[X,Z]$. [/mm]

vg Luis

PS: Fuers Archiv: Sind $U,V,X,Y$ Zufallsvariablen und [mm] $a,b,c,d,e,f\in\IR$ [/mm] Zahlen, so ist

[mm] $\operatorname{Cov}[a+bU+cV,d+eX+fY]=be\operatorname{Cov}[U,X]+bf\operatorname{Cov}[U,Y]+ce\operatorname{Cov}[V,X]+cf\operatorname{Cov}[V,Y]$. [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de