www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Kreis als Fkt.
Kreis als Fkt. < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreis als Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:00 Do 07.12.2006
Autor: m.styler

Aufgabe
Gleichung für die tangenten den Graphen von f durch den Punkt S.
Die Berührpunkte angeben.

a) [mm] f(x)=\wurzel{25-x²};S(-1/7) [/mm]
b) [mm] f(x)=\wurzel{20-(x-3²}-4;S(5/0) [/mm]

Hallo!

Kann mir jemand sagen was ich tun soll?

Ich habe hier einige Formeln:

[mm] mr=\bruch{y1}{x1} [/mm] also: [mm] mt=-\bruch{x1}{y1}und [/mm] somit mt

[mm] -\bruch{x1}{\wurzel{r²-x1²}} [/mm]

ich danke im voraus!

        
Bezug
Kreis als Fkt.: Aufgabe a)
Status: (Antwort) fertig Status 
Datum: 17:40 Do 07.12.2006
Autor: informix

Hallo m.styler,

> Gleichung für die tangenten den Graphen von f durch den
> Punkt S.
>  Die Berührpunkte angeben.
>  
> a) [mm]f(x)=\wurzel{25-x²};S(-1/7)[/mm]
>  b) [mm]f(x)=\wurzel{20-(x-3²}-4;S(5/0)[/mm]
>  
> Hallo!
>  
> Kann mir jemand sagen was ich tun soll?
>  
> Ich habe hier einige Formeln:
>  
> [mm]mr=\bruch{y1}{x1}[/mm] also: [mm]mt=-\bruch{x1}{y1}und[/mm] somit
> [mm] m_t=-\bruch{x1}{\wurzel{r²-x1²}} [/mm]
>  

Diese Formeln helfen dir leider nicht so sehr weit.

Grundsätzlich findet man die Tangente an irgendeinen Graphen zu f durch:
[mm] t(x)=f'(x_B)(x-x_B)+f(x_B) [/mm] mit B Berührpunkt.

Nun kennst du den leider nicht, dafür aber einen weiteren Punkt S, durch den die Gerade auch gehen soll:
[mm] t(-1)=7=f'(x_B)(-1-x_B)+f(x_B) [/mm]
aus dieser Gleichung kannst du nun [mm] x_B [/mm] und anschließend [mm] y_B [/mm] bestimmen.

Schaffst du den Rest jetzt?

Gruß informix

Bezug
                
Bezug
Kreis als Fkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:56 Do 07.12.2006
Autor: m.styler

Hallo!


Da wir noch keine Ableitungen hatten, sollte ich wohl mit den uns bekannten Formeln rechnen.

Wie lässt es sich anders berechnen?

(x-d)²+(y-e)²=r² Radius.

Aber wie kann ich nur die Tangente an den Graphen von f bestimmen?


mfG

Bezug
                
Bezug
Kreis als Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:02 So 10.12.2006
Autor: m.styler

Hallo!


Kann mir einer zur Berechnung der Tangente eine Formel nennen, ohne Ableitung??



mfg m.styler

Bezug
                        
Bezug
Kreis als Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 So 10.12.2006
Autor: Zwerglein

Hi, m.styler,

rechnerisch ziemlich aufwändig das Ganze!

Ich mach's mal anhand Deines ersten Beispiels:
Du stellst zunächst die Gleichung des Geradenbüschels durch den Punkt S auf. Das ergibt: y = ax + (a+7)

Jetzt setzt Du dieses Büschel mit der Kreisgleichung gleich.
(Die Idee dahinter ist, dass Du normalerweise ja Schnittpunkte mit dem Kreis ausrechnest. Dort wo statt zweier Schnittpunkte nur einer rauskommt, hast Du einen Berührpunkt. Normalerweise ergibt sich also ein Diskriminantenproblem, wobei Dich nur der Fall interessiert, dass die Diskriminante =0 wird!)

[mm] \wurzel{25 - x^{2}} [/mm] = ax + (a+7)

Nun quadriere und forme um. Mein Zwischenergebnis ist:

[mm] (a^{2}+1)*x^{2} [/mm] + 2a(a+7)*x + [mm] (a+7)^{2} [/mm] - 25 = 0

Die zugehörige Diskriminante ist
(bereits zusammengefasst und vereinfacht:
[mm] 96a^{2} [/mm] - 56a - 96

Wenn Du die nun =0 setzt, erhältst Du für a zwei Lösungen, nämlich:
[mm] a=\bruch{4}{3} [/mm] und a = [mm] -\bruch{3}{4} [/mm]  (ohne Gewähr!)

Setze die in Dein Geradenbüschel von oben ein und Du hast die gesuchten Tangenten. (Es gibt 2 davon!)

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de