www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Kreis in der Ebene
Kreis in der Ebene < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreis in der Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 So 11.02.2007
Autor: Sarah288

Aufgabe
Bestimmen Sie den Kreis, der die [mm] x_1-Achse [/mm] berührt und durch die Punkte P(1|2) und (-3|2) geht.

Hallo zusammen,

ich habe mal eine Frage zur obigen Aufgabe. Die Idee, die dahinter steht, habe ich (endlich!) verstanden.

Ich muss beide Punkte in die Form
[mm] (x_1-r)^2+(x_2-m)^2=r^2 [/mm] bringen und auflösen

Wenn ich beide Formen aufstelle und nach dem Substraktionsverfahren vorgehe, bleibt -8-8r=0 übrig, d.h. der Radius -1, aber ein Radius kann doch nicht negativ sein...

Kann mir vielleicht jemand sagen, wo mein Fehler liegt??
Vielen Dank und liebe Grüße...

        
Bezug
Kreis in der Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 So 11.02.2007
Autor: leduart

Hallo Sarah
> Bestimmen Sie den Kreis, der die [mm]x_1-Achse[/mm] berührt und
> durch die Punkte P(1|2) und (-3|2) geht.
>  Hallo zusammen,
>  
> ich habe mal eine Frage zur obigen Aufgabe. Die Idee, die
> dahinter steht, habe ich (endlich!) verstanden.
>
> Ich muss beide Punkte in die Form
> [mm](x_1-r)^2+(x_2-m)^2=r^2[/mm] bringen und auflösen

Hier liegt dein Fehler: wenn der Kreis x1 beruhren soll, ist der Mittelpkt (m,r) nicht (r,m)!
Da beide punkte dieselbe x2 Komp. haben kannst du ausserdem direkt schliessen m=(1-3)/2=-1
Gruss leduart



Bezug
                
Bezug
Kreis in der Ebene: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:02 So 11.02.2007
Autor: Sarah288


Stimmt, du hast recht!

Vielen Dank für deine Antwort...

Liebe Grüße, Sarah

Bezug
        
Bezug
Kreis in der Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 18:09 So 11.02.2007
Autor: riwe


> Bestimmen Sie den Kreis, der die [mm]x_1-Achse[/mm] berührt und
> durch die Punkte P(1|2) und (-3|2) geht.
>  Hallo zusammen,
>  
> ich habe mal eine Frage zur obigen Aufgabe. Die Idee, die
> dahinter steht, habe ich (endlich!) verstanden.
>
> Ich muss beide Punkte in die Form
> [mm](x_1-r)^2+(x_2-m)^2=r^2[/mm] bringen und auflösen
>  
> Wenn ich beide Formen aufstelle und nach dem
> Substraktionsverfahren vorgehe, bleibt -8-8r=0 übrig, d.h.
> der Radius -1, aber ein Radius kann doch nicht negativ
> sein...
>  
> Kann mir vielleicht jemand sagen, wo mein Fehler liegt??
>  Vielen Dank und liebe Grüße...

wenn der kreis die x-achse berühren soll, lautet seine gleichung
[mm](x-m)²+(y-r)²=r²[/mm]
du hast also - wie es scheint - nicht r berechnet, sondern die x-koordinate des mittelpunktes m = -1

und das eingesetzt ergibt r = 2.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de