www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Kreisgleichung Komplexe Zahlen
Kreisgleichung Komplexe Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreisgleichung Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 Fr 21.06.2013
Autor: evilmaker

Aufgabe
<br>
Bestimmen Sie alle z[mm] \in[/mm]C mit [mm] \in \mid z+i \mid=\sqrt{5}* \mid z \mid[/mm] und fertigen Sie eine Skizze dieser Loesungsmenge an, dabei sind alle Achsenabschnitte in C zu bestimmen.


<br>
Hi, also ich habe ein Problem mit der Kreisgleichung, die rauskommt. Mein Radius entspricht nicht dem, der Musterloesung und ich finde keinen Fehler. Hier meine Rechnung:

[mm]\mid z+i \mid=\sqrt{5}* \mid z \mid[/mm]
[mm] \leftrightharpoons x^2 + (y+1)^2 = 5 * (x^2+y^2) \leftrightharpoons x^2 + y^2 - \frac{1}{2}y = \frac{1}{4} \leftrightharpoons x^2 + (y- \frac{1}{4})^2 = \frac{1}{4} So laut Kreisgleichung ist das r in Normalform quadriert, also haette ich gesagt, dass r = (1/2)^2 Laut Loesung soll r = ( \sqrt{5}/4)^2 sein[/mm]

Das Problem ist: Ich habe keine Ahnung wieso und ich finde einfach keinen Ansatz, wie ich weiterkommen koennte.

Vielen herzlichen Dank im voraus!!!

        
Bezug
Kreisgleichung Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:45 Fr 21.06.2013
Autor: schachuzipus

Hallo evilmaker,


> <br>
> Bestimmen Sie alle z[mm] \in[/mm]C mit [mm] \in \mid z+i \mid=\sqrt{5}* \mid z \mid[/mm] und
> fertigen Sie eine Skizze dieser Loesungsmenge an, dabei
> sind alle Achsenabschnitte in C zu bestimmen.

>

> <br>
> Hi, also ich habe ein Problem mit der Kreisgleichung, die
> rauskommt. Mein Radius entspricht nicht dem, der
> Musterloesung und ich finde keinen Fehler. Hier meine
> Rechnung:

>

> [mm]\mid z+i \mid=\sqrt{5}* \mid z \mid[/mm]
> [mm]\leftrightharpoons x^2 + (y+1)^2 = 5 * (x^2+y^2) \leftrightharpoons x^2 + y^2 - \frac{1}{2}y = \frac{1}{4} \leftrightharpoons x^2 + (y- \frac{1}{4})^2 = \frac{1}{4} So laut Kreisgleichung ist das r in Normalform quadriert, also haette ich gesagt, dass r = (1/2)^2 Laut Loesung soll r = ( \sqrt{5}/4)^2 sein[/mm]

>

> Das Problem ist: Ich habe keine Ahnung wieso und ich finde
> einfach keinen Ansatz, wie ich weiterkommen koennte.

>

> Vielen herzlichen Dank im voraus!!!

Ich kann in deinen Gleichungen nichts markieren ...

Wie kommst du von [mm] $x^2+(y+1)^2=5(x^2+y^2)$ [/mm] auf die nächste Zeile?

DAs stimmt doch nicht ...

Rechne das nochmal nach ....

Gruß

schachuzipus

Bezug
                
Bezug
Kreisgleichung Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:01 Fr 21.06.2013
Autor: evilmaker

Wieso sollte das nicht stimmen?

[mm] \leftrightharpoons x^2 + (y+1)^2 = 5 * (x^2+y^2) \leftrightharpoons x^2 + (y+1)^2 = 5x^2 + 5y^2 \leftrightharpoons x^2 + y^2 + 2y + 1 = 5x^2 + 5y^2 \leftrightharpoons -4x^2 -4y^2 + 2y +1 = 0 \leftrightharpoons -4x^2 - 4y^2 + 2y = -1 \leftrightharpoons -x^2 -y^2 + 1/2y = -1/4 \leftrightharpoons x^2 + y^2 - 1/2y = 1/4[/mm]

Bezug
                        
Bezug
Kreisgleichung Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:07 Fr 21.06.2013
Autor: Marcel

Hallo,

> Wieso sollte das nicht stimmen?
>  
> [mm]\leftrightharpoons x^2 + (y+1)^2 = 5 * (x^2+y^2) \leftrightharpoons x^2 + (y+1)^2 = 5x^2 + 5y^2 \leftrightharpoons x^2 + y^2 + 2y + 1 = 5x^2 + 5y^2 \leftrightharpoons -4x^2 -4y^2 + 2y +1 = 0 \leftrightharpoons -4x^2 - 4y^2 + 2y = -1 \leftrightharpoons -x^2 -y^2 + 1/2y = -1/4 \leftrightharpoons x^2 + y^2 - 1/2y = 1/4[/mm]

das war okay. Danach entstand der Fehler; die quadratische Ergänzung
funktioniert so:
[mm] $$x^2+px+q=(x+\tfrac{p}{2})^2\red{\;-\;\tfrac{p^2}{4}}+q$$ [/mm]

In einer Gleichung kann man das auch so verpacken
[mm] $$x^2+px+q=t$$ [/mm]
[mm] $$\iff x^2+px+\frac{p^2}{4}+q=t+\frac{p^2}{4}$$ [/mm]
[mm] $$\iff {(x+\tfrac{p}{2})}^2+q=t+\frac{p^2}{4}\,.$$ [/mm]

Gruß,
  Marcel

Bezug
                
Bezug
Kreisgleichung Komplexe Zahlen: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 17:11 Fr 21.06.2013
Autor: Marcel

Hallo Schachu,

> Hallo evilmaker,
>  
>
> > <br>
>  > Bestimmen Sie alle z[mm] \in[/mm]C mit [mm] \in \mid z+i \mid=\sqrt{5}* \mid z \mid[/mm] und

>  
> > fertigen Sie eine Skizze dieser Loesungsmenge an, dabei
>  > sind alle Achsenabschnitte in C zu bestimmen.

>  >
>  > <br>

>  > Hi, also ich habe ein Problem mit der Kreisgleichung,

> die
>  > rauskommt. Mein Radius entspricht nicht dem, der

>  > Musterloesung und ich finde keinen Fehler. Hier meine

>  > Rechnung:

>  >
>  > [mm]\mid z+i \mid=\sqrt{5}* \mid z \mid[/mm]

>  >

> [mm]\leftrightharpoons x^2 + (y+1)^2 = 5 * (x^2+y^2) \leftrightharpoons x^2 + y^2 - \frac{1}{2}y = \frac{1}{4} \leftrightharpoons x^2 + (y- \frac{1}{4})^2 = \frac{1}{4} So laut Kreisgleichung ist das r in Normalform quadriert, also haette ich gesagt, dass r = (1/2)^2 Laut Loesung soll r = ( \sqrt{5}/4)^2 sein[/mm]
>  
> >
>  > Das Problem ist: Ich habe keine Ahnung wieso und ich

> finde
>  > einfach keinen Ansatz, wie ich weiterkommen koennte.

>  >
>  > Vielen herzlichen Dank im voraus!!!

>  
> Ich kann in deinen Gleichungen nichts markieren ...
>  
> Wie kommst du von [mm]x^2+(y+1)^2=5(x^2+y^2)[/mm] auf die nächste
> Zeile?
>  
> DAs stimmt doch nicht ...

doch - der Fehler entsteht genau eine Zeile später!

Gruß,
  Marcel

Bezug
                        
Bezug
Kreisgleichung Komplexe Zahlen: Korrekturmitteilung
Status: (Korrektur) oberflächlich richtig Status 
Datum: 17:22 Fr 21.06.2013
Autor: schachuzipus

Hallo Marcy,



> > Ich kann in deinen Gleichungen nichts markieren ...
> >
> > Wie kommst du von [mm]x^2+(y+1)^2=5(x^2+y^2)[/mm] auf die nächste
> > Zeile?
> >
> > DAs stimmt doch nicht ...

>

> doch - der Fehler entsteht genau eine Zeile später!

Jo, da hast du natürlich recht, ich habe die vermeintlich falsche Zeile auch genauso auf meinem Schmierzettel ;-)

Bin wohl verrutscht.

Danke fürs Aufpassen!

Gruß

schachuzipus

Bezug
                                
Bezug
Kreisgleichung Komplexe Zahlen: Korrekturmitteilung
Status: (Korrektur) oberflächlich richtig Status 
Datum: 17:37 Fr 21.06.2013
Autor: Marcel

Hi Schachu,

> Hallo Marcy,

>

>
>
> > > Ich kann in deinen Gleichungen nichts markieren ...
>  > >

>  > > Wie kommst du von [mm]x^2+(y+1)^2=5(x^2+y^2)[/mm] auf die

> nächste
>  > > Zeile?

>  > >

>  > > DAs stimmt doch nicht ...

>  >
>  > doch - der Fehler entsteht genau eine Zeile später!

>  
> Jo, da hast du natürlich recht, ich habe die vermeintlich
> falsche Zeile auch genauso auf meinem Schmierzettel ;-)
>  
> Bin wohl verrutscht.

ich dachte es mir auch schon fast. Eile mit Weile! ;-)

Gruß,
  Marcel

Bezug
        
Bezug
Kreisgleichung Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Fr 21.06.2013
Autor: Marcel

Hallo,

> <br>
>  Bestimmen Sie alle z[mm] \in[/mm]C mit [mm] \in \mid z+i \mid=\sqrt{5}* \mid z \mid[/mm] und
> fertigen Sie eine Skizze dieser Loesungsmenge an, dabei
> sind alle Achsenabschnitte in C zu bestimmen.
>  
> <br>
>  Hi, also ich habe ein Problem mit der Kreisgleichung, die
> rauskommt. Mein Radius entspricht nicht dem, der
> Musterloesung und ich finde keinen Fehler. Hier meine
> Rechnung:
>  
> [mm]\mid z+i \mid=\sqrt{5}* \mid z \mid[/mm]
>  [mm]\leftrightharpoons x^2 + (y+1)^2 = 5 * (x^2+y^2) \leftrightharpoons x^2 + y^2 - \frac{1}{2}y = \frac{1}{4} \leftrightharpoons x^2 + (y- \frac{1}{4})^2 = \frac{1}{4}[/mm]


Du hast Dich verrechnet:
[mm] $$x^2+(y+1)^2=5x^2+5y^2$$ [/mm]
[mm] $$\iff 4(x^2+y^2)=2y+1$$ [/mm]
[mm] $$\iff x^2+y^2-\frac{1}{2}y=\frac{1}{4}$$ [/mm]

ist ja noch okay. Jetzt aber:
[mm] $$\iff x^2+(y-\tfrac{1}{4})^2\red{\;-\frac{1}{16}\;}=\frac{1}{4}\,.$$ [/mm]

Damit kommt am Ende
[mm] $$r=\frac{\sqrt{5}}{4}$$ [/mm]
raus (und zwar ohne Quadrat!).

Gruß,
  Marcel

Bezug
                
Bezug
Kreisgleichung Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:27 Fr 21.06.2013
Autor: evilmaker

Mein Gott wie daemlich von mir. Tut mir leid eure Zeit mit so einem Fehler vegeudet zu haben!

Trotzdem tausend Dank fuer das Aufzeigen. Vermutlich haette ich den Wald vor lauter Baeumen nicht gesehen.

Bezug
                        
Bezug
Kreisgleichung Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 Fr 21.06.2013
Autor: Marcel

Hi,

> Mein Gott wie daemlich von mir. Tut mir leid eure Zeit mit
> so einem Fehler vegeudet zu haben!

Quatsch - ich bin genauso froh, wenn mir jemand so einen Fehler zeigt.
Man macht sowas halt, und wenn's einem nicht auffällt, überliest man es
immer und immer und immer wieder mal!
  

> Trotzdem tausend Dank fuer das Aufzeigen. Vermutlich haette
> ich den Wald vor lauter Baeumen nicht gesehen.

Eben. Ist doch nur menschlich. Und aus Fehlern lernt man, von daher ist
das alles andere als Zeitvergeudung!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de