www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Kreisteilungskörper
Kreisteilungskörper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreisteilungskörper: Idee
Status: (Frage) beantwortet Status 
Datum: 02:38 Fr 24.08.2012
Autor: Lonpos

Aufgabe
Sei [mm] \xi_p=e^{\bruch{2\pi*i}{p}} [/mm]

Z.z: [mm] [\IQ(\xi_p):\IQ]=p-1 [/mm]

Ich kann das nicht ganz nachvollziehen, dass die Antwort p-1 und nicht p ist, denn:

[mm] \IQ(\xi_p)=\{a_0+...+a_{p-1}*\xi^{p-1}\}, [/mm] die Basis lautet daher

[mm] (1,\xi,...,\xi^{p-1}), [/mm] enthält also p Elemente ??

        
Bezug
Kreisteilungskörper: Antwort
Status: (Antwort) fertig Status 
Datum: 06:46 Fr 24.08.2012
Autor: felixf

Moin!

Lass mich raten - $p$ ist eine Primzahl? Andernfalls stimmt die Aussage nicht.

> Sei [mm]\xi_p=e^{\bruch{2\pi*i}{p}}[/mm]
>  
> Z.z: [mm][\IQ(\xi_p):\IQ]=p-1[/mm]
>  Ich kann das nicht ganz nachvollziehen, dass die Antwort
> p-1 und nicht p ist, denn:
>  
> [mm]\IQ(\xi_p)=\{a_0+...+a_{p-1}*\xi^{p-1}\},[/mm] die Basis lautet
> daher

Nein, das ist keine Basis, sondern ein Erzeugendensystem. Es ist naemlich linear abhaengig.

Es gilt naemlich [mm] $\xi^0 [/mm] + [mm] \xi^1 [/mm] + [mm] \xi^2 [/mm] + [mm] \dots [/mm] + [mm] \xi^{p-1} [/mm] = 0$.

LG Felix


Bezug
                
Bezug
Kreisteilungskörper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:59 Fr 24.08.2012
Autor: Lonpos

Danke für deine Antwort, wenn also [mm] (1,\xi,...,\xi^{p-1}) [/mm] ein l.a Erzeugendensystem ist, wie kann ich daraus nun ermitteln, wie die Basis ausschaut und in weiterer Folge das Ergebnis p-1 ist? Ich stehe da gerade noch ein bisschen auf der Leitung.

[mm] p\in\IP, [/mm] habe ich vergessen zu erwähnen.

Bezug
                        
Bezug
Kreisteilungskörper: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Fr 24.08.2012
Autor: felixf

Moin,

> Danke für deine Antwort, wenn also [mm](1,\xi,...,\xi^{p-1})[/mm]
> ein l.a Erzeugendensystem ist, wie kann ich daraus nun
> ermitteln, wie die Basis ausschaut und in weiterer Folge
> das Ergebnis p-1 ist? Ich stehe da gerade noch ein bisschen
> auf der Leitung.

versuch doch mal das Minimalpolynom von [mm] $\xi$ [/mm] zu bestimmen. Dessen Grad liefert dir die Dimension, und du kannst direkt eine Basis hinschreiben.

LG Felix


Bezug
                                
Bezug
Kreisteilungskörper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:35 Fr 24.08.2012
Autor: Lonpos

Du meinst wahrsch.

[mm] f=1+x+x^2+x^3+...+x^{p-1}=\bruch{x^p-1}{x-1} [/mm]

Und hier ist der Grad p-1

Bezug
                                        
Bezug
Kreisteilungskörper: Antwort
Status: (Antwort) fertig Status 
Datum: 15:43 Fr 24.08.2012
Autor: teo

Hallo,

das stimmt.

Grüße

Bezug
                                                
Bezug
Kreisteilungskörper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 Fr 24.08.2012
Autor: Lonpos

Ich schaue mir gerade noch ähnliche Körpererweiterungen an, und hätte noch eine Frage zu den folgenden beiden.

[mm] [\IQ(\wurzel{2},\wurzel{3}); \IQ(\wurzel{2})], [/mm] hier würde ich 3 bekommen ?

[mm] [L:\IQ], [/mm] mit [mm] L=\IQ(\wurzel{p},\wurzel[3]{q}) [/mm]

L muss doch die folgende Menge sein: [mm] L=\{a+b\wurzel{p}+c\wurzel[3]{q}+d\wurzel{p}\wurzel[3]{q}+e\wurzel[3]{q}\wurzel[3]{q}\,a,b,c,d,e\in\IQ} [/mm]

=> [mm] [L:\IQ]=5, [/mm] aber laut meinem Skriptum ist es 6 ?

Bezug
                                                        
Bezug
Kreisteilungskörper: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 Fr 24.08.2012
Autor: teo


> Ich schaue mir gerade noch ähnliche Körpererweiterungen
> an, und hätte noch eine Frage zu den folgenden beiden.
>  
> [mm][\IQ(\wurzel{2},\wurzel{3}); \IQ(\wurzel{2})],[/mm] hier würde
> ich 3 bekommen ?
>  
> [mm][L:\IQ],[/mm] mit [mm]L=\IQ(\wurzel{p},\wurzel[3]{q})[/mm]
>  
> L muss doch die folgende Menge sein:
> [mm]L=\{a+b\wurzel{p}+c\wurzel[3]{q}+d\wurzel{p}\wurzel[3]{q}+e\wurzel[3]{q}\wurzel[3]{q}\,a,b,c,d,e\in\IQ}[/mm]

Sicherlich sollen p,q wieder primzahlen sein.

L ist ein Körper der als Erweiterungskörper über Q eine bestimmte Dimension hat, die es herauszufinden gilt. L entspricht nicht dieser Menge die du angegeben hast! Du meinst außerdem nicht, dass L die Menge ist, sondern suchst eine Basis der Körpererweiterung.

Gehe doch Schrit für Schritt vor. Du musst zunächst zeigen, dass [mm] [\IQ[\wurzel{p}]: \IQ] = 2 [/mm] ist. Wieso? Minimalpoylnom angebeben usw.

Dann betrachtest du [mm] [\IQ[\wurzel[3]{q}]:\IQ] [/mm]. Minimalpolynom angeben usw.

Jetzt gilt [mm] [\IQ[\wurzel{p}]:\IQ] = 2, [\IQ[\wurzel[3]{q}]:\IQ]= 3 [/mm]. Es gibt einen Satz, der dir nun wegen ggt(2,3)  = 1 liefert, dass [mm] [\IQ[\wurzel[3]{q},\wurzel{p}]:\IQ]=2*3=6 [/mm] gilt.

Es geht aber auch anders. Du musst zeigen, dass [mm] \wurzel[3]{p} \not\in \IQ[\wurzel{q}] [/mm] enthalten ist. Dann folgt mit der Gradformel

[mm] [\IQ[\wurzel[3]{q},\wurzel{p}]:\IQ] = [\IQ[\wurzel[3]{q},\wurzel{p}]:\IQ[\wurzel{p}]]*[\IQ\wurzel{p}]:\IQ]=3*2=6 [/mm].

Deine Basis die du angeben wolltest ergibt sich aus den Basen von [mm] \IQ[\wurzel[3]{q}] [/mm] über [mm] \IQ [/mm] und [mm] \IQ\[\wurzel{p} [/mm] über [mm] \IQ. [/mm] Also ist [mm] \{1,\wurzel{p},\wurzel[3]{q},(\wurzel[3]{q})^2,\wurzel{p}*\wurzel[3]{q},\wurzel{p}*(\wurzel[3]{q})^2\} [/mm] Basis der Körpererweiterung.
  

> => [mm][L:\IQ]=5,[/mm] aber laut meinem Skriptum ist es 6 ?




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de