www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - KreiszahlRestklassenQuersumme
KreiszahlRestklassenQuersumme < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

KreiszahlRestklassenQuersumme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:53 Do 01.11.2012
Autor: sarah89

Aufgabe
Aufgabe 1: Es sei π (Pi)die Kreiszahl. Beweisen Sie, dass durch
a~ b ⇔ es existiert eine ganze Zahl z mit a= bπhochz
auf der Menge R der reellen Zahlen eine Äquivalenzrelation erklärt wird. Die
Menge der ganzen Zahlen bezeichnen wir mit Z und die Menge der rationalen
Zahlen mit Q.
Es sei R|~= {[a]|a in R}die Menge der zugehörigen Äquivalenzklassen.
Man berechne:
[1] und [n]⋂Z für jede ganze Zahl n sowie [r]⋂Q für jede rationale Zahl r.

Aufgabe 2: Es sei m eine natürliche Zahl. Mit Z bezeichnen wir die Menge
der ganzen Zahlen. Ferner bezeichnen wir mit Z|mZ die Menge der Restk-
lassen modulo m und mit [a]m die Restklasse modulo m, die die ganze Zahl
a als Element enthält.
Beweisen Sie, dass durch
f([a]m)= ggT(a,m)
eine Abbildung f:Z|mZ |-> Z erklärt wird. Ist diese Abbildung injektiv?
Ist diese Abbildung surjektiv?

Aufgabe 3: Wir bezeichnen mit Q(n) die Quersumme einer natürlichen
Zahl n im dekadischen Stellenwertsystem.
Man überprüfe, ob die folgenden Rechenregeln fur alle natürlichen Zahlen
a;b gelten:
Q(a+b)=Q(a)+Q(b)
[Q(a+b)] 9 =[Q(a)] 9 +[Q(b)] 9
Q(ab) =Q(a)Q(b)
[Q(ab)] 9 =[Q(a)] 9 [Q(b)] 9


Hallo,

ich habe diese Frage bereits in einem anderen Forum gestellt, bisher ohne Ergebnis!
Leider sitze ich auch vor diesen Aufgaben völlig hilflos. Ich kann in meinen Unterlagen aus der Vorlesung einfach nichts wiederfinden, was mir weiterhelfen könnte. Leider gibt es auch kein Skript,sodass alles ziemlich chaotisch ist. Auch in Zusammenarbeit mit einigen Kommilitonen konnten wir keine der Aufgaben lösen,noch nicht einmal ansatzweise.Ich bin ziemlich verzweifelt und hoffe auf eure Unterstützung!
LG!

        
Bezug
KreiszahlRestklassenQuersumme: Antwort
Status: (Antwort) fertig Status 
Datum: 11:46 Do 01.11.2012
Autor: abakus


> Aufgabe 1: Es sei π (Pi)die Kreiszahl. Beweisen Sie, dass
> durch
>  a~ b ⇔ es existiert eine ganze Zahl z mit a= bπhochz

Hallo,
soll das heißen [mm] $a=b*\pi^z$? [/mm]

>  auf der Menge R der reellen Zahlen eine
> Äquivalenzrelation erklärt wird. Die

Welche drei Merkmale hat eine Äquivalenzrelation?
Gruß Abakus

>  Menge der ganzen Zahlen bezeichnen wir mit Z und die Menge
> der rationalen
>  Zahlen mit Q.
>  Es sei R|~= {[a]|a in R}die Menge der zugehörigen
> Äquivalenzklassen.
>  Man berechne:
>  [1] und [n]⋂Z für jede ganze Zahl n sowie [r]⋂Q für
> jede rationale Zahl r.
>  
> Aufgabe 2: Es sei m eine natürliche Zahl. Mit Z bezeichnen
> wir die Menge
>  der ganzen Zahlen. Ferner bezeichnen wir mit Z|mZ die
> Menge der Restk-
>  lassen modulo m und mit [a]m die Restklasse modulo m, die
> die ganze Zahl
>  a als Element enthält.
>  Beweisen Sie, dass durch
>  f([a]m)= ggT(a,m)
>  eine Abbildung f:Z|mZ |-> Z erklärt wird. Ist diese

> Abbildung injektiv?
>  Ist diese Abbildung surjektiv?
>  
> Aufgabe 3: Wir bezeichnen mit Q(n) die Quersumme einer
> natürlichen
>  Zahl n im dekadischen Stellenwertsystem.
>  Man überprüfe, ob die folgenden Rechenregeln fur alle
> natürlichen Zahlen
>  a;b gelten:
>  Q(a+b)=Q(a)+Q(b)
>  [Q(a+b)] 9 =[Q(a)] 9 +[Q(b)] 9
>
>  Q(ab) =Q(a)Q(b)
>  [Q(ab)] 9 =[Q(a)] 9 [Q(b)] 9
>
>  
> Hallo,
>  
> ich habe diese Frage bereits in einem anderen Forum
> gestellt, bisher ohne Ergebnis!
> Leider sitze ich auch vor diesen Aufgaben völlig hilflos.
> Ich kann in meinen Unterlagen aus der Vorlesung einfach
> nichts wiederfinden, was mir weiterhelfen könnte. Leider
> gibt es auch kein Skript,sodass alles ziemlich chaotisch
> ist. Auch in Zusammenarbeit mit einigen Kommilitonen
> konnten wir keine der Aufgaben lösen,noch nicht einmal
> ansatzweise.Ich bin ziemlich verzweifelt und hoffe auf eure
> Unterstützung!
>  LG!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de