www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Kreuzprodukt, Isomorph
Kreuzprodukt, Isomorph < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreuzprodukt, Isomorph: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:57 Fr 28.12.2012
Autor: sissile

Aufgabe
Finden Sie Gruppen [mm] G_1, G_2, H_1 [/mm] und [mm] H_2 [/mm] mit der Eigenschaft, dass
[mm] G_1 \times G_2 \cong H_1 \times H_2 [/mm] aber [mm] G_i \not\cong H_j [/mm] für i,j [mm] \in \{1,2\} [/mm]

Hallo.
ich bin bei der aufgabe leider ziemlich ratlos. Kann deshalb auch keine brauchbaren Ansätze posten. Hat wer ideen oder tipps für mich?

Liebe Grüße

        
Bezug
Kreuzprodukt, Isomorph: Antwort
Status: (Antwort) fertig Status 
Datum: 21:25 Fr 28.12.2012
Autor: Leopold_Gast

Vielleicht so: Es seien [mm]\mathfrak{Z}_2, \mathfrak{Z}_3[/mm] zyklisch der Ordnung 2 bzw. 3. Setze in [mm]\mathfrak{Z}_2 \times \mathfrak{Z}_2 \times \mathfrak{Z}_3[/mm] verschieden Klammern.

Bezug
                
Bezug
Kreuzprodukt, Isomorph: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:38 Fr 28.12.2012
Autor: sissile

Ich kann dir nicht ganz folgen.
Wieso schrebst du nicht "einfach" [mm] \IZ_1 =\{\overline{0}\}= [/mm] {0+ [mm] k*\IZ|k \in \IZ\}=0 [/mm] + [mm] m\IZ, \IZ_2=\{\overline{0},\overline{1}\} [/mm]

> Setze in $ [mm] \mathfrak{Z}_2 \times \mathfrak{Z}_2 \times \mathfrak{Z}_3 [/mm] $ verschieden Klammern.

Ich verstehe nicht wie du das meinst.
Was möchtest du als [mm] G_1, G_2, H_1, H_2 [/mm] wählen?

Bezug
                        
Bezug
Kreuzprodukt, Isomorph: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 Fr 28.12.2012
Autor: Leopold_Gast

Du kannst auch [mm]\mathbb{Z}_2[/mm] usw. statt [mm]\mathfrak{Z}_2[/mm] usw. schreiben, wenn dir das lieber ist. Da das Abstraktum "zyklische Gruppe" hier im Vordergrund steht und die konkrete Realisierung als Restklassen modulo 2 usw. nicht wichtig ist, habe ich die andere Bezeichnung gewählt.

So macht man aus drei Faktoren zwei:

[mm]\underbrace{a \cdot b}_u \cdot c = u \cdot c[/mm]

[mm]a \cdot \underbrace{b \cdot c}_v = a \cdot v[/mm]

Bezug
                                
Bezug
Kreuzprodukt, Isomorph: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:17 Fr 28.12.2012
Autor: sissile

Wu wählst also [mm] G_1 [/mm] = [mm] \IZ_2 \times \IZ_2, G_2 [/mm] = [mm] \IZ_3, H_1 [/mm] = [mm] \IZ_2, H_2 [/mm] = [mm] \IZ_2 \times \IZ_3 [/mm]

Wie beweise ich aber nun die ganzen NICHT-Isomorphismen?
LG

Bezug
                                        
Bezug
Kreuzprodukt, Isomorph: Antwort
Status: (Antwort) fertig Status 
Datum: 22:20 Fr 28.12.2012
Autor: Leopold_Gast

Gruppenordnung!

Bezug
                                                
Bezug
Kreuzprodukt, Isomorph: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:39 Fr 28.12.2012
Autor: sissile

danke verstehe ;)

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de