www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Krümmung
Krümmung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Krümmung: Wert der Krümmung
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:58 Di 10.03.2015
Autor: Hias

Hallo,

momentan stehe ich etwas auf dem Schlauch.
Wenn ich eine Kurve x(t) habe und ihre Krümmung [mm] $x''(t)=\frac{d^2 x(t)}{dt^2}$. [/mm] Jetzt würde ich mich interessieren wie sich die Eigenschaft stark gekrümmt zu sein im Wert der Krümmung wiederspiegelt.
Ist der Wert der Krümmung besonders groß, wenn die Kurve stark gekrümmt ist? Ich bin die ganze Zeit davon ausgegangen, denn die Krümmung einer fast geraden Kurve ist ja fast 0, kann man nun den Rückschluss ziehen, dass bei starker Krümmung der Wert der zweiten Ableitung groß ist oder gilt das i.A nicht?

Danke im Voraus
Matthias

        
Bezug
Krümmung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:09 Di 10.03.2015
Autor: Gonozal_IX

Hiho,

> Ist der Wert der Krümmung besonders groß, wenn die Kurve stark gekrümmt ist?

sofern die Funktion zweimal differenzierbar ist, ja.
Wobei "Wert" genauer zu konkretisieren ist.

D.h. je größer die zweite Ableitung betragsmäßig ist, desto stärker gekrümmt ist die Kurve.
Denn die Krümmung kann ja sowohl in positiver richtung "groß" sein, als auch in negativer Richtung.

Gruß,
Gono

Bezug
                
Bezug
Krümmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:05 Di 10.03.2015
Autor: Hias

Hallo und danke für deine Antwort.

Eine weiter Frage hätte sich ergeben.
In meinem alten Ana-Skrip habe ich gelesen, dass die Kurve für die Krümmung bogenlängenparametrisiert sein muss? Ist das zwingend erforderlich? Ich möchte nämlich zeigen, dass eine spezielle Kurve bei stark-gekrümmten stellen langsamer druchlaufen wird. Dazu kann ich keine bogenlängenparametrisierte Kurve brauchen.

Bezug
                        
Bezug
Krümmung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:18 Di 10.03.2015
Autor: rmix22


> Hallo und danke für deine Antwort.
>  
> Eine weiter Frage hätte sich ergeben.
> In meinem alten Ana-Skrip habe ich gelesen, dass die Kurve
> für die Krümmung bogenlängenparametrisiert sein muss?
> Ist das zwingend erforderlich? Ich möchte nämlich zeigen,
> dass eine spezielle Kurve bei stark-gekrümmten stellen
> langsamer druchlaufen wird. Dazu kann ich keine
> bogenlängenparametrisierte Kurve brauchen.  

Nun, die Krümmung is nur dann einfach die zweite Ableitung, wenn der Parameter die Bogenlänge ist. Dann ist die Durchlauf"geschwindigkeit" als Verhältnis von Wegdifferenz zu Parameterdifferenz natürlich konstant.
Ansonsten ist sie von der Parametrisierung abhängig und du kannst nicht allgemein für jede beliebige Parametrisierung behaupten, dass die Durchlaufgeschwindigkeit indirekt proportional zur Krümmung ist.

Die entsprechenden Formel für die Krümmung bei beliebiger Parametrisierung solltest du nachschlagen, wobei es darauf ankommt, ob du es mit einer planaren oder einer Raumkurve zu tun hast.

Gruß RMix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de