www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Kürzen
Kürzen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kürzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 So 09.10.2005
Autor: vicky0503

Hallo ich habe vollgendes Problem.

Es handelt sie hierbei um eine Ableitungsfunktion die ungekürzt und nicht zusammengefasst so aussieht:

f'(x)= $ [mm] -(2(x^2+1)-2x\cdot{}2x)/(x^2+1)^2 [/mm] $

zusammengefasst sieht das dann so aus:

f'(x)= [mm] -(2-2x^2)/(x^2+1)^2 [/mm]

warum kann ich hier nicht [mm] (x^2+1) [/mm] mit [mm] (x^2+1)^2 [/mm] kürzen?

Und hier noch ein Problem zur 2. Ableitung.

diese lautet ungekürzt:

f"(x) = - [mm] (-4x(x^2+1)^2-(2-2x^2)*2(x^2+1)*2x)/(x^2+1)^4 [/mm]

jedenfalls wurde im 2. Faktor im Zähler also [mm] (x^2+1)^2 [/mm] der Exponent außerhalb des Klammerausdruckes gestrichen und durch eine "1" ersetzt.
und der 4. Faktor im Zähler [mm] (x^2+1) [/mm] ganz gestrichen.

Im Nenner wurde dann [mm] (x^2+1)^4 [/mm] der Exponent außerhalb des Klammerausdruckes (4) gestrichen und durch eine "3" ersetzt.

Ich versteh absolut nicht wie hier gekürzt wurde. Denn meiner Meinung wurde im Zähler 2 mal [mm] (x^2+1) [/mm] gekürzt..also müsste dann im Nenner ja [mm] (x^2+1)^2 [/mm] stehen!?

Und warum konnte man denn nun bei der 2. Ableitung kürzen und bei der ersten nicht?
Diese Aufgabe ist eine Abiturprüfungsaufgabe aus dem Jahr 1998.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kürzen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:16 So 09.10.2005
Autor: Bastiane

Hallo Victoria!

> Es handelt sie hierbei um eine Ableitungsfunktion die
> ungekürzt und nicht zusammengefasst so aussieht:
>  
> f'(x)= [mm]-(2(x^2+1)-2x\cdot{}2x)/(x^2+1)^2[/mm]
>  
> zusammengefasst sieht das dann so aus:
>  
> f'(x)= [mm]-(2-2x^2)/(x^2+1)^2[/mm]
>  
> warum kann ich hier nicht [mm](x^2+1)[/mm] mit [mm](x^2+1)^2[/mm] kürzen?

Weil [mm] x^2+1 [/mm] nirgendwo steht! Wenn du im Zähler die 2 ausklammerst, steht da: [mm] 2(1-x^2), [/mm] wenn du (-2) ausklammerst, stände da: [mm] (-2)(x^2-1). [/mm] Du siehst also, dass es hier keinen gemeinsamen Faktor zum Kürzen mehr gibt.

> Und hier noch ein Problem zur 2. Ableitung.
>  
> diese lautet ungekürzt:
>  
> f"(x) = - [mm](-4x(x^2+1)^2-(2-2x^2)*2(x^2+1)*2x)/(x^2+1)^4[/mm]
>  
> jedenfalls wurde im 2. Faktor im Zähler also [mm](x^2+1)^2[/mm] der
> Exponent außerhalb des Klammerausdruckes gestrichen und
> durch eine "1" ersetzt.
>  und der 4. Faktor im Zähler [mm](x^2+1)[/mm] ganz gestrichen.
>  
> Im Nenner wurde dann [mm](x^2+1)^4[/mm] der Exponent außerhalb des
> Klammerausdruckes (4) gestrichen und durch eine "3"
> ersetzt.
>
> Ich versteh absolut nicht wie hier gekürzt wurde. Denn
> meiner Meinung wurde im Zähler 2 mal [mm](x^2+1)[/mm] gekürzt..also
> müsste dann im Nenner ja [mm](x^2+1)^2[/mm] stehen!?
>  
> Und warum konnte man denn nun bei der 2. Ableitung kürzen
> und bei der ersten nicht?
> Diese Aufgabe ist eine Abiturprüfungsaufgabe aus dem Jahr
> 1998.

Leider verstehe ich deine "Erklärung" hierzu irgendwie nicht. Außerdem ist der Bruch sehr unübersichtlich. Warum probierst du es nicht mit dem Formeleditor?
Ich hätte als zweite Ableitung:
[mm] f''(x)=\bruch{4x(x^2+1)^2-(2x-2)*2(x^2+1)*2x}{(x^2+1)^4} [/mm]

Nun kann man einmal [mm] (x^2+1) [/mm] kürzen, dann erhält man:

[mm] f''(x)=\bruch{4x(x^2+1)-4x*2(x^2-1))}{(x^2+1)^3} [/mm]

Nun haben wir hier aber wieder [mm] x^2-1 [/mm] und nicht überall [mm] x^2+1, [/mm] deswegen kann hier nicht mehr gekürzt werden.

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
Kürzen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 So 09.10.2005
Autor: asp

Hallo vicky0503

Ich glaube du hast mit dem Kürzen selbst etwas missverstanden:
Man kann in einem Bruch nur so kürzen, wenn keine Summen betroffen sind. "Aus Summen kürzen nur die D..." hast du bestimmt schon gehört :-) Macht aber nichts, kann ja passieren - aus Fehlern lernt man.

Also: Kürzen stellst du dir einfach so vor: Man teilt den Zähler und den Nenner durch das gleiche. Das hat den Effekt, dass sich etwas aufhebt.
[mm] \bruch{ab+ac}{ad}=\bruch{\bruch{ab+ac}{a}}{\bruch{ad}{a}}=\bruch{\bruch{ab}{a}+\bruch{ac}{a}}{\bruch{ad}{a}}=\bruch{b+c}{d} [/mm]
So sieht man auch gleich, warum man bei einer Summe im Zähler jeden Summanden durch das gleiche teilen muss (und nicht nur bei einem - das war wohl oben dein Fehler).

Gruß
Aaron

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de