www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Kugel - Tangentialebene
Kugel - Tangentialebene < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kugel - Tangentialebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:31 Mo 03.12.2007
Autor: bluepearl

Aufgabe
Stellen Sie eine Gleichung derjenigen Kugel K auf, welche den Punkt A(1/5/8) enthält und die y-z-Ebene im Punkt B(0/4/4) berührt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


Es geht also darum wie man von einer Tangentialebene auf eine Kugelgleichung kommt.

Ich habe mir Überlegt, dass da ja - eigentlich - ganz einfach sein müsste.

Die Ebenengleichung lautet in der Normalform allgemein

E: [mm] (\vec{x}-\vec{b})*\vec{n}=0 [/mm]

Die Tangetialebene lautet allgemein

[mm] T:(\vec{x}-\vec{b})*(\vec{b}-\vec{m})=0 [/mm]    (M ist Mittelpunkt der Kugel)

Wenn man die Gleichungen miteinander vergleicht, liegt es nahe einfach

[mm] \vec{m}=\vec{b}-\vec{n} [/mm]     zu setzten.

Das klappt auch manchmal, nämlich dann, wenn man die Tangetialebene vorher aus Kugel"daten" errechnet hat.

Bei obiger Aufgabe kann man sein den Normalenvektor (beziehungsweise seinen x-Wert) aber frei wählen, es existieren ja unendlich viele paralle.
Entsprechend erhält man für M ganz unterschiedliche Ergebnisse.
Man muss also irgendwie A einbeziehen....aber wie?
Ich habe alles probiert und nie ein gescheites Ergebnis erhalten. Bitte helft mir, ich schreibe morgen Mathe-LK und soll mir diese Aufgabe "nochmal ganz genau anschauen" (Und wir haben heute erst mit dem Thema Kugeln angefangen!)
Danke!



        
Bezug
Kugel - Tangentialebene: Tipp
Status: (Antwort) fertig Status 
Datum: 22:21 Mo 03.12.2007
Autor: informix

Hallo bluepearl und [willkommenmr],

> Stellen Sie eine Gleichung derjenigen Kugel K auf, welche
> den Punkt A(1/5/8) enthält und die y-z-Ebene im Punkt
> B(0/4/4) berührt.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  
>
> Es geht also darum wie man von einer Tangentialebene auf
> eine Kugelgleichung kommt.
>  
> Ich habe mir Überlegt, dass da ja - eigentlich - ganz
> einfach sein müsste.
>  
> Die Ebenengleichung lautet in der Normalform allgemein
>  
> E: [mm](\vec{x}-\vec{b})*\vec{n}=0[/mm]
>  
> Die Tangetialebene lautet allgemein
>
> [mm]T:(\vec{x}-\vec{b})*(\vec{b}-\vec{m})=0[/mm]    (M ist
> Mittelpunkt der Kugel)
>  
> Wenn man die Gleichungen miteinander vergleicht, liegt es
> nahe einfach
>  
> [mm]\vec{m}=\vec{b}-\vec{n}[/mm]     zu setzten.
>  
> Das klappt auch manchmal, nämlich dann, wenn man die
> Tangetialebene vorher aus Kugel"daten" errechnet hat.
>  
> Bei obiger Aufgabe kann man sein den Normalenvektor
> (beziehungsweise seinen x-Wert) aber frei wählen, es
> existieren ja unendlich viele paralle.
>  Entsprechend erhält man für M ganz unterschiedliche
> Ergebnisse.
>  Man muss also irgendwie A einbeziehen....aber wie?
>  Ich habe alles probiert und nie ein gescheites Ergebnis
> erhalten. Bitte helft mir, ich schreibe morgen Mathe-LK und
> soll mir diese Aufgabe "nochmal ganz genau anschauen" (Und
> wir haben heute erst mit dem Thema Kugeln angefangen!)

Tipp: wenn B der Berührpunkt auf der y-z-Ebene ist, liegt der Mittelpunkt "senkrecht" darüber/darunter,
genauer: aus dieser Eigenschaft kannst du schon zwei Koordinaten des Mittelpunkts ermitteln....
Die letzte Koordinate solltest du mit Hilfe von A ermitteln können.

Nimm die Koordinatengleichung der Kugel und setze ein.


Gruß informix

Bezug
                
Bezug
Kugel - Tangentialebene: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:43 Mo 03.12.2007
Autor: bluepearl

Dankeschön, das war der entscheidende Tipp! Wenn man sich das klar gemacht hat,ist die Aufgabe gar nicht mehr schwer ;)
Ich konnte dann einfach die Koordinatengleichung der Kugel nehmen und r als Betrag des Differenzvektors von M und B darstellen. Wen ich alles richtig aufgelöst habe, ist das Ergebnis für die x-Koordinate des Mittelpunktes 9.
Grüße, bluepearl

Bezug
        
Bezug
Kugel - Tangentialebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:25 Mo 03.12.2007
Autor: chrisno

Hallo bluepearl,

wahrscheinlich ist das nicht die Richtung, die Du gehen willst, aber was hälst Du von Folgendem:
Durch den Punkt B und den Normalenvektor ist eine Gerade gegeben. Du kannst also eine Gleichung angeben, die alle Punkte dieser Grade liefert. Gesucht ist nun der Punkt M auf der Gerade, der zu B und A den gleichen Abstand hat. Das ist der Mittelpunkt der Kugel.
M = B + r n mit noch zu bestimmenden r.
Abstand M-B = Abstand M-A sollte Dir eine Gleichung liefern, aus der Du r Berechnen kannst. (Meine Idee, ausprobiert habe ich es nicht.)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de