www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Kugel und Ebene
Kugel und Ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kugel und Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 Di 12.02.2008
Autor: chrissi8800

Hallo,

also ich habe folgende Aufgabe und komm irgendwie nicht auf eine Antwort. Wäre nett  wenn ihr mir weiterhelfen würdet:

1) Es sei eine Kugel K, die alle Koordinatenebenen und die Ebene E: 2x + y - 2z = 5 berührt. Begründen Sie, dass M(r|r|-r) als Kugelmittelpunkt gewählt werden kann.

chris

----
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kugel und Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Di 12.02.2008
Autor: abakus


> Hallo,
>  
> also ich habe folgende Aufgabe und komm irgendwie nicht auf
> eine Antwort. Wäre nett  wenn ihr mir weiterhelfen würdet:
>
> 1) Es sei eine Kugel K, die alle Koordinatenebenen und die
> Ebene E: 2x + y - 2z = 5 berührt. Begründen Sie, dass
> M(r|r|-r) als Kugelmittelpunkt gewählt werden kann.

Der Mittelpunkt einer Kugel hat von JEDEM Kugelpunkt der Abstand r -also auch von den drei beschriebenen Berührungspunkten. Wird eine Kugel von einer Ebene berührt, so steht der Berührungsradius senkrecht auf dieser Ebene. Also stehen die drei Verbindungen von M zu den Berührungspunkten senkrecht auf den Koordinatenebenen, sodass alle drei Koordinaten von M den Betrag r haben.
Für einen Radius r gibt es hier 8 mögliche Lagen des Mittelpunkts:
(r,r,r), (r,r,-r), (r,-r,r), (-r,r,r), (-r,-r,r), (-r,r,-r), (r,-r,-r), (-r,-r,-r), da der Kreis in jedem der 8 Oktanten des räumlichen Koordinatensystems liegen kann.
Du musst nur noch zeigen, dass wenigstens ein Stück der Ebene E im selben Oktanten liegt (x,y positiv, z negativ). Es ist nicht unbedingt erforderlich, den Berührungspunkt mit der Ebene anzugeben. Stelle dir einfach vor, die Kugel ist ein winziger Luftballon, der in der Zimmerecke liegt. Je mehr du ihn aufbläst, um so größer wird er und wird irgendwann eine beliebige Ebene berühren, die durch dein Zimmer verläuft.  


>  
> chris
>  
> ----
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Kugel und Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:30 Di 12.02.2008
Autor: chrissi8800

dankeschön für die erläuterung!!

Bezug
                        
Bezug
Kugel und Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Di 12.02.2008
Autor: chrissi8800

Ich hab leider noch eine Frage! :S

wenn ich die genaueren Koordinaten für den Kreismittelpunkt berechnen möchte, müsste ich doch vom Ursprung die Senkrechte zur Ebene ermitteln und davon die Hälfte der Strecke nehmen oder?

Bezug
                                
Bezug
Kugel und Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Di 12.02.2008
Autor: abakus


> Ich hab leider noch eine Frage! :S
>  
> wenn ich die genaueren Koordinaten für den Kreismittelpunkt
> berechnen möchte, müsste ich doch vom Ursprung die
> Senkrechte zur Ebene ermitteln und davon die Hälfte der
> Strecke nehmen oder?

Nein.Der Ursprung ist ja selbst kein Punkt der Kugel. (Außerdem liegen Ursprung, M und der Ebenenberührungspunkt in der Regel nichr auf einer Linie.
Der Kugelmittelpunkt (r|r|-r) liegt auf einer Geraden, die vom Ursprung durch den Punkt (1|1|-1) geht.
Also: [mm] \overrightarrow{OM}=r*\vektor{1 \\1\\-1}. [/mm]
Von jedem beliebigen Punkt dieser Geraden musst du seinen Abstand zr Ebere E (natürlich in Abh. von r) ermitteln und dann denjenigen Wert r ermitteln, für den dieser Abstand eben gleich r ist.
Obwohl: enfacher ist es, den Normalenvektor der Ebene zu ermitteln. Der steht ha senkrecht auf der Ebene (genau wie der Berührungsradius, wenn die Kugel die Ebene berührt. Setze einfach diesen Normalenvektor im Punkt M an und kürze/verlängere ihn so, dass sein Betrag gerade r ist. Dann hast du den Berührungspunkt.
Denke daran, dass du den Normalenvektor in zwei entgegengesetzte Richtungen antragen kannst. Es gibt zwei solche Berührungskugeln.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de