www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Kugelgleichung
Kugelgleichung < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kugelgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 So 11.11.2007
Autor: SweetMiezi88w

Aufgabe
Ermitteln Sie die Gleichungen der Kugeln [mm] K_{2} [/mm] und [mm] K_{3} [/mm] , deren Mittelpunkte auf g liegen und die sowohl E als auch [mm] K_{1} [/mm] berühren!

Hi :)
Hier sind die Gleichungen:
[mm] K_{1}: [\vektor{6 \\ 10 \\ -7}-\vec{x}]^{2}=9 [/mm]
g: [mm] \vektor{6 \\ 10 \\ -7}+k*\vektor{-1,5 \\ -0,75 \\ 1,5} [/mm]
E: [mm] \vektor{4 \\ 0 \\ -5}+l*\vektor{0,5 \\ 1 \\ 1}+m*\vektor{-0,5 \\ 2 \\ 0,5} [/mm]
Wie soll ich denn jetzt [mm] K_{2} [/mm] und [mm] K_{3} [/mm] bestimmen???
Danke für eure Hilfe :) lg

        
Bezug
Kugelgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 So 11.11.2007
Autor: koepper

Hallo Miezi,

> Ermitteln Sie die Gleichungen der Kugeln [mm]K_{2}[/mm] und [mm]K_{3}[/mm] ,
> deren Mittelpunkte auf g liegen und die sowohl E als auch
> [mm]K_{1}[/mm] berühren!
>  Hi :)
> Hier sind die Gleichungen:
>  [mm]K_{1}: [\vektor{6 \\ 10 \\ -7}-\vec{x}]^{2}=9[/mm]
>  g:
> [mm]\vektor{6 \\ 10 \\ -7}+k*\vektor{-1,5 \\ -0,75 \\ 1,5}[/mm]
>  E:
> [mm]\vektor{4 \\ 0 \\ -5}+l*\vektor{0,5 \\ 1 \\ 1}+m*\vektor{-0,5 \\ 2 \\ 0,5}[/mm]
>  
> Wie soll ich denn jetzt [mm]K_{2}[/mm] und [mm]K_{3}[/mm] bestimmen???

Ich schlage vor du malst dir erstmal die ganze Situation auf.
Der Mittelpunkt von K1 liegt offenbar auch auf g.

Gehe dann erstmal ausgehend vom Mittelpunkt von K1 nach "links" auf der Geraden und bestimme die Schar aller Kugeln (mit Parameter t), deren Mittelpunkte auf g liegen und die K1 berühren. Bringe dann E in hessesche Normalenform und setze in die sich ergebende Abstandsformel einerseits den Mittelpunkt der Kugelschar in Abhängigkeit von t ein, andererseits - als Abstand - den Radius der Kugel in Abhängigkeit von t ein. Diese Gleichung ist nach t zu lösen und liefert die eine gesuchte Kugel. Auf der anderen Seite ("rechts") von K1 entsprechend. Beides geht auch gleichzeitig. Du mußt dann nur den Definitionsbereich für t entsprechend einschränken, daß die Berührung nur von außen möglich ist. So dürfte das hier gemeint sein.

LG
Will

Bezug
                
Bezug
Kugelgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:48 So 11.11.2007
Autor: SweetMiezi88w

dankeschön, ich werde es mal versuchen
Liebe Grüße und noch einen schönen Abend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de