www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Kugelkappenüberschneidung
Kugelkappenüberschneidung < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kugelkappenüberschneidung: Aufgabe
Status: (Frage) überfällig Status 
Datum: 16:30 So 22.05.2022
Autor: Diogenes_II.

Aufgabe
Gegeben ist ein Kugelsphäre mit dem Radius r. Es gibt zwei Ebenenschnitte durch die Kugel. Die  eine Ebene hat den Abstand a die andere den Abstand b Kugelmittelpunkt und beide Normalen haben den Winkel [mm] \phi [/mm] zueinander (s. Abbildung)

[Dateianhang nicht öffentlich]

Gesucht ist die gemeinsame Mantelfläche der zwei sich überschneidender Kugelkappen. Kennt jemand eine geschlossene Lösung oder gibt es keine? Falls es nur eine für 90° gibt hilft mir das auch. Oder hat jemand eine Idee für einen Lösungsansatz? Der spezielle Fall, das eine Ebene durch den Mittelpunkt ist jedoch nicht relevant, diese Lösung ist bekannt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt und bin dankbar für jede Hilfe



Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Kugelkappenüberschneidung: Leider
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:26 Fr 27.05.2022
Autor: HJKweseleit

Ich habe zu deinem Problem folgende Überlegungen angestellt:

Wenn man die Ränder der Flächen betrachtet, handelt es sich um die Überschneidung zweier Kreise. In der Ebene würde man die Schnittpunkte durch eine Strecke verbinden und die beiden Kreisabschnitte getrennt berechnen.

Hier sind diese Flächen aber gewölbt. Man kann auf der Kugel die Schnittpunkte durch einen Großkreis verbinden und müsste dann eine Formel für die Fläche finden, die durch einen Großkreis von einer Kugelkappe abgetrennt wird.

Ich habe die Rest-Kappe in konzentrische Kreisringe zerlegt, die nach Erreichen des Großkreises in Kreisring-Abschnitte übergehen. Ein zweiter Weg war das Zerlegen in Streifen, die jeweils überall gleiche Breite haben (als ob man einen Apfel in Scheiben schneidet).

Meine Versuche hierzu sind insofern gescheitert, als dass ich für die so entstandenen Integrale keine Stammfunktion finden kann. Auch Wolfram Alpha scheitert daran, ebenso meine Mathe-Programme.

Vielleicht ist jemand anderes schlauer und kriegt es hin.

Bezug
        
Bezug
Kugelkappenüberschneidung: Keine geschlossene Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:49 Sa 04.06.2022
Autor: Infinit

Liebe Freunde der sphärischen Trigonometrie,
zu dieser Aufgabe wird es m.E. keine geschlossene Lösung geben, numerische Annäherungen sind sicher möglich.
Damit Diiogenes eine Mitteilung bekommt, dass sich zu seiner Frage schon etwas getan hat, habe ich die Aufgabe mal auf "teilbeantwortet" gestellt.
Viele Greüße,
Infinit

Bezug
        
Bezug
Kugelkappenüberschneidung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mi 22.06.2022
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de