Kumulative Verteilungsfunktion < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Verkehrszählung:
20 % der betrachteten Fahrzeuge sind LKWs
Je 1 von 100 der Fahrer sind weiblich
Wahrscheinlichkeit, dass es sich bei zufällig herausgegriffenen Fahrzeug um von Frau gesteuerten PKW handelt beträgt 0,28.
So viel zum notwendigen, jetzt die Teilaufgabe die ich nicht verstehe:
Nun wird eine Gruppe von 3 aufeinanderfolgenden Fahrzeugen zufällig ausgewählt. X steht für die Anzahl der PKWs.
Geben sie die zur Zufallsgröße X zugehörige kumulative Verteilungsfunktion an. |
also bloß als Ergänzung, dass ihr nicht alles durchrechnen braucht
X P(X)
0 0,008
1 0,096
2 0,384
3 0,512
soweit hab ichs noch rausbekommen, nur mit der kumulativen hab ich ein Problem.
Folgendes steht in der Lösung:
x F(x)
[mm] ]-\infty;0[ [/mm] 0
[0;1[ 0,008
[1;2[ 1,04
[2;3[ 0,488
[mm] [3;+\infty[ [/mm] 1
soweit so gut, ich weiß ja auch wie sie darauf kommen
nehmen wir als Bsp [1;2[ sie berechnen es indem sie den Wert von 0 mit dem von 1 addieren
nur frag ich mich warum?
weil es bedeuted doch, dass es der Wert von 1 bis 2 ausgeschlossen annimmt. Also würde er für mich 0,096 annehmen.
In dem Fall ist doch der Wert von 0 nicht dabei?
Also das ist mir ein bisschen unklar, vielleicht könnt ihr mir helfen, wäre super!
|
|
|
|
Hi, Goldschatz,
> Nun wird eine Gruppe von 3 aufeinanderfolgenden Fahrzeugen
> zufällig ausgewählt. X steht für die Anzahl der PKWs.
>
> Geben sie die zur Zufallsgröße X zugehörige kumulative
> Verteilungsfunktion an.
> also bloß als Ergänzung, dass ihr nicht alles durchrechnen
> braucht
>
> X P(X)
> 0 0,008
> 1 0,096
> 2 0,384
> 3 0,512
>
> soweit hab ichs noch rausbekommen, nur mit der kumulativen
> hab ich ein Problem.
> Folgendes steht in der Lösung:
>
> x F(x)
>
> [mm]]-\infty;0[[/mm] 0
> [0;1[ 0,008
> [1;2[ 1,04
wohl eher 0,104, stimmt's?
> [2;3[ 0,488
> [mm][3;+\infty[[/mm] 1
>
> soweit so gut, ich weiß ja auch wie sie darauf kommen
>
> nehmen wir als Bsp [1;2[ sie berechnen es indem sie den
> Wert von 0 mit dem von 1 addieren
>
> nur frag ich mich warum?
>
> weil es bedeuted doch, dass es der Wert von 1 bis 2
> ausgeschlossen annimmt. Also würde er für mich 0,096
> annehmen.
>
> In dem Fall ist doch der Wert von 0 nicht dabei?
So ist das nicht gemeint!
Die Verteilungsfunktion F(a) gibt definitionsgemäß die Wahrscheinlichkeit dafür an, dass die Zufallsgröße HÖCHSTENS den Wert a annimmt.
Beispiel: F(1,5) = P(X [mm] \le [/mm] 1,5) = P(X=0) + P(X=1) = 0,104.
oder: F(2,1) = P(X [mm] \le [/mm] 2,1) = P(X=0) + P(X=1) + P(X=2)= 0,488
Der Sinn einer solchen Definition wird Dir vermutlich erst dann einleuchten, wenn Ihr die Binomialverteilung und vielleicht sogar die Normalverteilung durchgenommen habt!
mfG!
Zwerglein
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:58 Di 27.02.2007 | Autor: | Goldschatz |
ooo dankeschön! dann hab ich das auch verstanden!
Ja wir haben es noch nicht durchgenommen, war halt ne Abiaufgabe, die ich durchgerechnet hab und es hat mir noch nicht so ganz eingeleuchtet.
Dankeschön!
|
|
|
|