Kurbelschleife (massebehaftet) < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 16:35 Mo 24.01.2011 | Autor: | Angie- |
Aufgabe | Ich hab eine zentrische Kurbelschleife.
Da ich hier keine Bilder hochladen kann, gebe ich den Link zum Dubbel (Taschenbuch für den Maschinenbau)
http://www.amazon.de/gp/reader/3540497145/ref=sib_dp_pt#reader-link
dort bitte im Suchfenster "Kurbelschleife" eingeben, das erste Suchergebnis zeigt das Bild.
konnte jetzt doch ein Bild hochladen. die Punkte B und C sind fest, somit a auch. c ist konstant, sowie my und beta. alle anderen größen hängen von theta ab. die geschwindigkeiten sind so wie im dubbel eingezeichnet.
v = [mm] omega_K [/mm] * c
vf = [mm] omega_C [/mm] * b(theta)
[mm] omega_C [/mm] ist die Winkelgeschwindigkeit am Punkt C.
vr ist bei mir die ableitung von b(theta)
Im Dubbel ist leider nicht angegeben, ob der Slider massebehaftet ist. In meinem Fall ist er es. Somit hat der Slider nicht nur eine Schwerpunktsgeschwindigkeit sondern auch eine rotatorische Geschwindigkeit im Schwerpunkt.
Ich habe eine Formel für die Schwerpunktsgeschwindigkeit (v ist ein Vektor): v = Länge des Sliders/2 * Winkelgeschwindigkeit.
alle geschwindigkeiten sind vektoren |
Stimmt diese Formel für v im Schwerpunkt?
Stimmen die Formeln aus dem Dubbel für meinen Fall (da hier der Slider massebehaftet ist) oder kann ich diese nicht anwenden?
In meinem Fall habe ich nämlich vr (laut dem Bild im Dubbel) gegeben. Und ich möchte über die verschiedenen Geschwindigkeiten in der Kurbelschleife mein [mm] omega_K [/mm] berechnen. Mit den Formeln aus dem Dubbel wäre es einfach.
Aber wie komme ich von meinem vr auf mein [mm] omega_K [/mm] wenn der Slider massebehaftet ist?
Welche beziehungen gelten dann zwischen den Geschwindigkeiten?
Ist mein vr dann die y-komponente von meiner Schwerpunktsgeschwindigkeit?
Vielen Dank schon mal für die Antworten :)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:21 Do 24.02.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|