Kurven < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 05:30 Do 20.04.2006 | Autor: | babel |
Aufgabe | Geben Sie die Gleichung der Ebene E an, die senkrecht zu f'( [mm] \bruch{\pi}{2}) [/mm] steht für f: [0, 2 [mm] \pi] \to [/mm] f(t)= (cost, sint, 2t) |
Guten Morgen,
ich brauche dringend Hilfe für diese Aufgabe.
Folgendes habe ich herausgefunden:
f'(t)= (-sint, cost, 2)
f'( [mm] \bruch{\pi}{2})= [/mm] (-1, 0, 2)
Die Tangente durch den Punkt lautet: (0, 1, Pi) + (-1, 0, 2)(t - [mm] (\bruch{\pi}{2})). [/mm] Stimmt das?
Ist (-1, 0, 2) der Normalvektor der Ebene?
Um die Gleichung der Ebene zu finden, muss ich die obenstehende Gerade =0 setzen?
Kann mir jemand helfen?
|
|
|
|
Hallo,
du hast recht, durch [mm] $f'(\frac{\pi}{2})=(-1,0,2)$ [/mm] ist der normalenvektor der ebene gegeben. Das heißt, dass deine ebene durch die gleichung $-x+2z=c$ charakterisiert ist, wobei das $c$ noch entsprechend bestimmt werden muss. Wenn Du einen Punkt hast, der in der ebene liegen muss, setze ihn einfach in die obige gleichung ein und berechne das entsprechende $c$.
VG
Matthias
|
|
|
|