Kurven im Raum < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:14 Di 22.06.2010 | Autor: | astella |
Aufgabe | Betrachtet werden die Kurven [mm] x1(t)=\vektor{x1 \\ y1}=\vektor{cosht \\ sinht} x2(t)=\vektor{x 2\\ y2}=\vektor{cost\\ sint} [/mm] und [mm] x3=\vektor{x 3\\ y3}=\vektor{-cosht \\ sinht}
[/mm]
a)Zeigen Sie, dass cosh2 t−sinh2 t =1 gilt! Welches Analogon hat diese Beziehung für
Winkelfunktionen?
b)Geben Sie mithilfe der Beziehungen aus a) parameterfreie Gleichungen der drei Kurven
an! |
Bei a) habe ich nachgewiesen, dass das eins ist. Und Anologon für Winkelfunkionen wäre: [mm] sin^{2}t+cos^{2}t=1.
[/mm]
Aber ist mir gar nicht klar, wie ich diese Beziehungen für parameterfreie Darstellung nutzen kann...
vielleicht kann mir jemand erklären, wie ich das machen muss? ich wäre für eine Hilfe sehr dankbar.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:39 Di 22.06.2010 | Autor: | felixf |
Moi!
> Betrachtet werden die Kurven [mm]x1(t)=\vektor{x1 \\ y1}=\vektor{cosht \\ sinht} x2(t)=\vektor{x 2\\ y2}=\vektor{cost\\ sint}[/mm]
> und [mm]x3=\vektor{x 3\\ y3}=\vektor{-cosht \\ sinht}[/mm]
> a)Zeigen
> Sie, dass cosh2 t−sinh2 t =1 gilt! Welches Analogon hat
> diese Beziehung für
> Winkelfunktionen?
> b)Geben Sie mithilfe der Beziehungen aus a) parameterfreie
> Gleichungen der drei Kurven
> an!
>
> Bei a) habe ich nachgewiesen, dass das eins ist. Und
> Anologon für Winkelfunkionen wäre: [mm]sin^{2}t+cos^{2}t=1.[/mm]
Genau.
> Aber ist mir gar nicht klar, wie ich diese Beziehungen
> für parameterfreie Darstellung nutzen kann...
> vielleicht kann mir jemand erklären, wie ich das machen
> muss? ich wäre für eine Hilfe sehr dankbar.
Nehmen wir mal die zweite Kurve. Du musst doch eine Beziehung zwischen [mm] $x_2 [/mm] = [mm] \cos [/mm] t$ und [mm] $y_2 [/mm] = [mm] \sin [/mm] t$ finden. Aber die steht doch oben: [mm] $\cos^2 [/mm] t + [mm] \sin^2 [/mm] t = 1$, also [mm] $x_2^2 [/mm] + [mm] y_2^2 [/mm] = 1$.
Jetzt musst du dir noch ueberlegen, dass jede Loesung von [mm] $x^2 [/mm] + [mm] y^2 [/mm] = 1$ von der Form $(x, y) = [mm] (x_2(t), y_2(t))$ [/mm] fuer ein passendes $t$ ist.
Dann hast du gezeigt: die zweite Kurve ist durch die Gleichung [mm] $x_2^2 [/mm] + [mm] y_2^2 [/mm] = 1$ gegeben.
Bei der ersten und dritten Kurve kannst du aehnlich vorgehen; du wirst allerdings zusaetzlich zu der Gleichung noch eine Ungleichung fuer eine der beiden Variablen brauchen.
LG Felix
|
|
|
|