www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Kurvendis Limes -Unendlich
Kurvendis Limes -Unendlich < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendis Limes -Unendlich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 Sa 19.01.2013
Autor: martin_vie

Aufgabe
Diskutieren Sie die Funktion f(x) = [mm] xe^x [/mm]

[mm] \limes_{x\rightarrow\infty} [/mm] f(x)

[mm] \limes_{x\rightarrow-\infty} [/mm] f(x)

[mm] \limes_{x\rightarrow\infty} [/mm] f'(x)

[mm] \limes_{x\rightarrow-\infty} [/mm] f'(x)

Hallo!

Die Aufgabe ist mir soweit ganz klar. Hab aber leider ein ganz grundsätzliches Problem mit [mm] -\infty [/mm] . Haben wir in den Vorlesungen leider recht selten behandelt.

Hab zwar die Lösungen für [mm] -\infty [/mm] und die sollten 0 sein. Kann es aber nicht ganz nachvollziehen, wieso das so ist.

Danke im Voraus!

LG

        
Bezug
Kurvendis Limes -Unendlich: Antwort
Status: (Antwort) fertig Status 
Datum: 19:25 Sa 19.01.2013
Autor: Gonozal_IX

Hiho,


> Die Aufgabe ist mir soweit ganz klar. Hab aber leider ein
> ganz grundsätzliches Problem mit [mm]-\infty[/mm] . Haben wir in
> den Vorlesungen leider recht selten behandelt.

Nun das ist nicht wirklich unterschiedlich zu [mm] $+\infty$. [/mm]
Wenn dir das wirklich soviel Kopfzerbrechen bereitet, betrachte stattdessen einfach:

[mm] $\lim_{x\to\infty} [/mm] f(-x)$

Das ist dasselbe und kommt ohne [mm] $-\infty$ [/mm] aus :-)

Was bereitet dir denn Probleme?

MFG,
Gono.

Bezug
                
Bezug
Kurvendis Limes -Unendlich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 Sa 19.01.2013
Autor: martin_vie

Wenn man zum Beispiel [mm] xe^x [/mm] nimmt , dann geht x gegen [mm] -\infty [/mm] und [mm] e^x [/mm] gegen 0.

Daraus ergibt sich dann [mm] -\infty [/mm] * 0  und das ist ja dann undefiniert.

LG

Bezug
                        
Bezug
Kurvendis Limes -Unendlich: Antwort
Status: (Antwort) fertig Status 
Datum: 20:31 Sa 19.01.2013
Autor: Gonozal_IX

Hiho,

> Wenn man zum Beispiel [mm]xe^x[/mm] nimmt , dann geht x gegen
> [mm]-\infty[/mm] und [mm]e^x[/mm] gegen 0.
>  
> Daraus ergibt sich dann [mm]-\infty[/mm] * 0  und das ist ja dann
> undefiniert.

Genau, und was weißt du über solche undefinierten Grenzwertausdrücke?
Wie kann man denen zu Leibe rücken?
Kleiner Tipp:

[mm] $xe^x [/mm] = [mm] \bruch{x}{e^{-x}}$ [/mm]

Dann kommst du auf einen undefinierten Ausdruck, den du bearbeiten können solltest :-)

MFG,
Gono.

Bezug
                                
Bezug
Kurvendis Limes -Unendlich: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:44 So 20.01.2013
Autor: martin_vie

Auf des umstellen von [mm] e^x [/mm] hab ich nicht gedacht!

Danke dem Marquis :)

und natürlich auch dir Gonozal_IX.

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de