www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Kurvendiskussion
Kurvendiskussion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Kurvendiskussion (e^x-a)^2
Status: (Frage) beantwortet Status 
Datum: 15:29 Fr 17.11.2006
Autor: Sebastian-

Aufgabe
NST und Ableitungen der Funktion

[mm] f_{a}(x)= (e^x-a)^2 [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi, ich hab heute diese Funktion bekommen und soll jetzt Nullstellen; Ableitungen machen:

[mm] f_{a}(x)= (e^x-a)^2 [/mm]

Ist das jetzt ab Anfang bei den NST eine binomische Formel ?

also [mm] (e^x-a) [/mm] * [mm] (e^x-a) [/mm]

Danke


        
Bezug
Kurvendiskussion: Nullstellen
Status: (Antwort) fertig Status 
Datum: 15:58 Fr 17.11.2006
Autor: Goldener_Sch.

Hallo Sebastian!
...und einen schönen Tag!!


Mal vorweg: Ja, ist handelt sich um eine "binomische Formel".

....so, jetzt aber mal zu den Nullstelen der Funktion:

[mm]f_a(x)=(e^x-a)^2[/mm]

Da du nun weist, dass eine Nullstelle vorliegt, der Funktionsterm also Null wird, wenn die Klammer Null wird, musst du also überlegen, für welche [mm]x[/mm] die Klammer dies tut.
...also muss folgender Teiterm nach [mm]x[/mm] aufgelöst werden, dabei aber auch der Parameter [mm]a[/mm] beachtet!
Dieses ist besonders nötig, da keine Einschrenkungen für den Parameter [mm]a[/mm] gelten zu scheinen.

Das geht dan so:

[mm]e^x-a=0[/mm]

...und das kann man schön umformen; man erhält...

[mm] \gdw[/mm] [mm]e^x=a[/mm]

...das nun logarithmieren mit dem [mm]ln[/mm], man erhält:

[mm] \Rightarrow[/mm] [mm]x=ln(a)[/mm]

...so, nun hätte man die Nullstelle...jedoch: Der [mm]ln[/mm] stellte noch Bedingungen an den den Parameter [mm]a[/mm].
...eine Fallunterscheidung:

Gilt [mm]a=1[/mm] so ist die Nulstelle [mm]N=0[/mm].

Gilt [mm]a\le0[/mm] so existiert, zumindest nicht in [mm]\IR[/mm], keine Nullstelle der Funktion.

Gilt [mm]a>0\wedge a\not=0[/mm], so existiert eine Nullstelle [mm]N=ln(a)[/mm].


Ich hoffe, dies hilft dir weiter... und ich habe keinen Fehler gemacht;-)!



Mit den besten Grüßen

Goldener Schnitt

Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Fr 17.11.2006
Autor: Sebastian-

Hi, danke noch einmal für deine schnelle Antwort!

Du hast doch oben selbst gesagt das es eine binomische Formel ist, aber warum hast du das hoch 2 einfach weckgelassen ?

$ [mm] (e^x-a) [/mm] * [mm] (e^x-a) [/mm] $

Ich komme da auf:

[mm] 2e^x [/mm] + [mm] e^x*-a [/mm] + [mm] e^x*-a [/mm] + [mm] a^2 [/mm]

oder ?!




Bezug
                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 Fr 17.11.2006
Autor: Ltd83

also zum Thema "binomische Formel". Das brauchst du hier gar nicht. Es gilt zwar [mm] (e^x-a)^2=0 [/mm], aber daraus folgt lediglich, dass einer der beiden Faktoren also [mm] e^x-a=0 [/mm] sein muss, also kannst du die gleichung einfach nach x auflösen und erhälst den Logarithmus von a als Lösung. Wahrscheinlich ist in der Aufgabe auch noch [mm]a>=0 [/mm] gegeben, oder?

Bezug
                                
Bezug
Kurvendiskussion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:55 Fr 17.11.2006
Autor: Sebastian-

Ja stimmt, hab ich übersehen..........sry^_^

Bezug
                                        
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 Fr 17.11.2006
Autor: Sebastian-

Spielt das hoch 2 eigentlich bei den Ableitungen eine Rolle ?

Wenn mir jemand die erste machen könnte dann hätte ich eine Grundlage für die 2te und 3te :O)


thx!

Bezug
                                                
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 Fr 17.11.2006
Autor: Ltd83

du machst es einem echt nicht leicht ;)

also die Ableitung der e-Fkt. ist ja bekanntlich die e-Fkt, oder? und die ableitung einer quadratischen funktion ist bakanntlich [mm](x^2)'=2x[/mm]. außerdem kennst du doch die kettenregel, die besagt [mm]f=f(g(x))\Rightarrow f'(x)=\partial f/ \partial g *\partial g / \partial x [/mm]. Da das jetzt alles geklärt ist, dürfte es wirklich keine Probleme mehr geben, oder?

[mm]f(g(x))=(e^x-a)^2, g(x)=e^x-2 \Rightarrow f'(x)= 2*g(x)*(e^x-a)'=2*(e^x-a)*e^x[/mm]

kannst du natürlich auch umständlicher über die produktregel machen und da kommt das gleiche raus.

und fertig :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de