www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Kurvendiskussion
Kurvendiskussion < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Rückfrage, Idee
Status: (Frage) beantwortet Status 
Datum: 20:43 Di 13.02.2007
Autor: Samuel

Aufgabe
Untersuche die Funktion [mm] \integral_{a}^{b}{f(x) dx} [/mm] = [mm] x^{5}-3x^{3}-2x^{2} [/mm] auf: 1.Symnetrie,2. Nullstellen, 3.Extrempunkte, 4.Wendepunkte und Sattelpunkte und 5. zeichne den Graph.

Hallo allerseits!
Zu der obigen Aufgabe komme ich leider nur in Ansätzen weiter. Zu 1. der Symnetrie habe ich herausgefunden, dass Achsensymnetrie zur y-Achse besteht, da f(x)= f(-x), korrekt?
Zu 2. fangen die Probleme bereits an. Wie komme ich darauf? Ausklammern, Polynomdivision?
Bei 3. und 4. brauche ich wohl die Nullstellen, sehe ich das richtig?
5. düfte wohl kein Problem sein;)

Ich würde mich über Rückmeldungen freuen,
MfG Samuel

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Di 13.02.2007
Autor: Aaron

Hallo Samuel,

1. Wäre f(x) = f(-x) wäre es achsensymmetrisch. Da hast du Recht. Dem ist allerdings nicht so. Setz für x doch (-x) mal ein.
Danach schaust du ob -f(-x) = f(x) entspricht (evtl. Punktsymmetrie).

Als Tip: Du siehst auch schon an deinen Exponenten deiner x, ob die Funktion symmetrisch ist und wenn ja, ob Achsen- oder Punktsymmetrisch.

Wenn nur gerade Exponenten vorhanden sind, ist die Funktion Achsensymmetrisch.

Wenn nur ungerade Exponenten vorhanden sind, ist die Funktion Punktsymmetrisch.
(Bedenke: x = [mm] x^{1}) [/mm]


2. Um Nullstellen (Schnittpunkte mit der x-Achse) zu bestimmen musst du f(x) = 0 setzen. Du erhälts nun die Punkte, die auf der Höhe 0 der y-Achse liegen. Folglich die Punkte, die die x-Achse schneiden.


Für 3 und 4 musst du die Ableitungen bilden.

3. & 4. f'(x) = 0 setzen. Die erste Ableitung gibt die Steigung an, somit ist die Steigung gleich 0. An den Punkten müssen also Extrempunkte oder Wendepunkte vorliegen.

Um das zu untersuchen setzt du die Ergebnisse nun in die 2te Ableitung ein. Danach musst du deine Werte interpretieren.

x < 0 => Hochpunkt;
x > 0 => Tiefpunkt;
x = 0 => Die Steigung der Steigung ist 0.
In dem Fall gibt die 3te Ableitung Aufschluss, ob es sich um einen Sattelpunkt handelt.



Bezug
                
Bezug
Kurvendiskussion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:37 Di 13.02.2007
Autor: Samuel

Danke für die schnelle Antwort!
Hat mir geholfen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de