www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Kurvendiskussion
Kurvendiskussion < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Symmetrieverhalten
Status: (Frage) beantwortet Status 
Datum: 17:00 Mo 12.03.2007
Autor: Stromberg

Hallo allerseits,

ich habe zur Kurvendiskussion ein paar allgemeine Fragen.

Am Beispiel von zwei Aufgaben...
Für das Aufstellen einer Funktionsgleichung gillt:

Der Graph einer ganzrationalen Funktion 4. Grades verläuft durch den Punkt P(-1/11) und hat an der Stelle x=0 einen Wendepunkt mit waagerechter Tangente. W(1/-1) ist ein weiterer Wendepunkt.
Stellen Sie die Gleichung der Funktion auf.

Hier habe ich gelernt, daß ich zum Aufstellen der Funktionsgleichung für eine Funktion 4. Grades 5 Angaben benötige.

Also habe ich bekommen:
f(-1) = 11
f''(0) = 0
f'(0) = 0
f(1) = -1
f''(1) = 0

Soweit sogut...das hatte ich mir auch gemerkt.
Also immer ein Argument mehr, als die Angabe des Grades.
Sprich bei Fkt 5. Grades 6 Argumente zum Berechnen, bei 4. Grades 5 usw.

Nun hatte ich aber auch zwei Aufgaben 3. Ordnung, bei dem es dann nur drei Argumente waren.

siehe:
Eine zum Ursprung symmetrische Parabel 3. Ordnung hat ihren Extrempunkt in E(-1/4). Stellen Sie die Funktion auf

Warum brauche ich hier keine vier Argumente???

Gruß Stepahn



        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:15 Mo 12.03.2007
Autor: XPatrickX

Hi,

Für eine zum Ursprung symmetrische Funktion gilt: f(-x) = -f(x). Dies ist nur dann erfüllt, wenn deine funktionsgleichung diese Form hat: f(x) = [mm] ax^3+bx. [/mm] (Bei ganzrationalen Funktionen kann man sich auch gut merken: Punktsymmetrie: nur ungerade Exponenten, Achsensymmetrie: nur gerade Exponetnen.) Du siehst es gibt nur zwei Unbekannte (a und b) somit reichen auch zwei Bedingungen.

Gruß Patrick

Bezug
        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:26 Mo 12.03.2007
Autor: angela.h.b.

Hallo,

wenn [mm] f(x)=ax^3+bx^2+cx+d [/mm] punktsymmetrisch zum Ursprung sein soll, muß gelten f(x)=-f(-x),

also

[mm] ax^3+bx^2+cx+d=ax^3-bx^2+cx-d [/mm]

<==> [mm] 2bx^2+2d=0 [/mm]  <==> [mm] bx^2+d=0. [/mm]

Was bedeutet [mm] bx^2+d=0? [/mm]
Es beinhaltet die Forderung, daß diese Bedingung für jedes x gilt.

Also muß es insbesondere für z.B. (weil man's leicht rechnen kann) x=1 und x=0 gelten, d.h. es gilt

b+d=0 und d=0.
Zusätzlich mit den Bedingungen durch den vorgegebenen Punkt und den Extremwert hast Du auch hier soviele Bedingungen, wie zu berechnende Variablen.    

Es sind also in der einen Symmetriebedingung zwei Forderungen an die Koeffizienten versteckt.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de