www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Kurvendiskussion Funktionschar
Kurvendiskussion Funktionschar < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion Funktionschar: Nullstellenbestimmen
Status: (Frage) beantwortet Status 
Datum: 17:26 Do 07.11.2013
Autor: h0aX

Aufgabe
Vollständige Kurvendiskussion von [mm] f(x)=\bruch{1}{8} [/mm] * [mm] x^{4} [/mm] - [mm] \bruch{3}{2} [/mm] * k * [mm] x^{2} [/mm] + [mm] \bruch{5}{2} [/mm] * [mm] k^{2} [/mm] * x

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hey Leute,
ich stehe bei dieser Aufgabe aufm Schlauch bzw. frage mich ob sich nicht jemand bei der Ausgangsfunktion vertan hat.

Zunächst hänge ich bei der Nullstellenbestimmung. Ich kann ja ein x ausklammern und habe somit die erste Nullstelle, aber bei der "Restfunktion" komme ich nicht weiter:

[mm] x^{3} [/mm] - 12 * k * x + 20 * [mm] k^{2} [/mm] = 0

eigentlich müsste ich ja eine Polynomdivision durchführen, jedoch komme ich schon beim Nullstellenraten nicht weiter, da mich das k stört...ist das überhaupt der richtige Ansatz bzw. führt es zum Ergebnis? Substituieren kann man ja auch nichts oder?

Gruß

        
Bezug
Kurvendiskussion Funktionschar: Tippfehler wahrscheinlich
Status: (Antwort) fertig Status 
Datum: 17:38 Do 07.11.2013
Autor: Loddar

Hallo h0ax,

[willkommenmr] !!

> Vollständige Kurvendiskussion von [mm]f(x)=\bruch{1}{8}[/mm] * [mm]x^{4}[/mm] - [mm]\bruch{3}{2}[/mm] * k * [mm]x^{2}[/mm] + [mm]\bruch{5}{2}[/mm] * [mm]k^{2}[/mm] * x

> Zunächst hänge ich bei der Nullstellenbestimmung. Ich
> kann ja ein x ausklammern und habe somit die erste Nullstelle,

[ok]


> aber bei der "Restfunktion" komme ich nicht weiter:
>
> [mm]x^{3}[/mm] - 12 * k * x + 20 * [mm]k^{2}[/mm] = 0
>
> eigentlich müsste ich ja eine Polynomdivision
> durchführen, jedoch komme ich schon beim Nullstellenraten
> nicht weiter, da mich das k stört...ist das überhaupt der
> richtige Ansatz bzw. führt es zum Ergebnis?

Grundsätzlich ist das wirklich der richtige Weg. Es bieten sich in erster Linie Teiler des Absolutgliedes (hier: [mm]+20*k^2[/mm] ) an.
Aber da hier jeweils unterschiedliche Potenzen von [mm]k_[/mm] auftreten, gewinnt man damit auch nicht viel bis gar nichts.

Es drängt sich wirklich der Verdacht auf, dass sich ein Tippfehler in der Aufgabenstellung eingeschlichen hat.

Denn für [mm]f_k(x) \ = \ \bruch{1}{8}*x^{\red{3}}-\bruch{3}{2}*k*x^2+\bruch{5}{2}*k^2*x[/mm] gibt es wunderschöne "glatte" Nullstellen.


Gruß
Loddar

Bezug
                
Bezug
Kurvendiskussion Funktionschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:49 Do 07.11.2013
Autor: h0aX

Okay, das dachte ich mir auch schon fast.
Für Funktionen, wie du sie beschrieben hast, sollte das lösen für mich auch kein Problem sein, war halt nur verwirrt, da bei dieser Aufgabe, wie du sagtest, dann immer unterschiedliche Potenzen von k auftreten und ich nicht wusste ob es eventuell noch andere Lösungsmöglichkeiten geben würde.

Danke für die schnelle Antwort!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de