www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Kurvendiskussion e-Funktion
Kurvendiskussion e-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:21 Mi 13.12.2006
Autor: datstina

Aufgabe
Für jedes s [mm] \in \IR [/mm] ist eine Funktion [mm] f_{s} [/mm] gegeben durch
[mm] f_{s}(x)= e^{2x}-2s*e^{x}-3s^{2}; [/mm] x [mm] \in \IR. [/mm]
Ihr Schaubild sei [mm] K_{s}. [/mm]
Untersuchen Sie [mm] K_{s} [/mm] für s>0 auf gemeinsame Punkte mit der x-Achse,auf Hoch-, Tief- und Wendepunkte sowie auf Asymptoten.

Ableitungen:
[mm] f'(x)=2e^{2x}-2se^{x} [/mm]
[mm] f''(x)=4e^{2x}-2se^{x} [/mm]
[mm] f'''(x)=8e^{2x}-2se^{x} [/mm]

Hallöchen,
bin kurz vorm Verzweifeln...schreibe morgen ne 12er-LK-Klausur und bin grad etwas stutzig geworden,da ich keine Ahnung hab wie man diese Funktion berechnet.Würde in der Aufgabe eine Funktion wie [mm] f(x)=(1-x)*e^{2x} [/mm] steht,wäre alles kein Problem,dann wüsste ich, wie ich auf die Nullstellen komme.Bei dieser Fkt. hab ich jedoch wirklich keine Ahnung,mein Lösen scheitert tatsächlich schon an den Nullstellen.Ich weiß nämlich nicht,wie ich das x aus dem Exponenten rauskriege...wenn ich beispielsweise bei dem Schritt bin: [mm] e^{2x}-2se^{x}=3s^{2} [/mm] komm ih niht weiter,denn ich weiß nicht,wie ich es dann schaffe,x allein stehen zu haben.
Folglich kriege ich auch die Extrem- und Wendepunkte nicht hin,denn wie soll das auch gehn,ich kann ja von den Ableitungen auch nicht die Nullstellen berechnen*gg*
Zu den Asymptoten hab ich auch eine Frage,und zwar würd ich gern wissen,ob mit der Aufgabenstellung gemeint ist,dass ich nur überprüfen soll,was mit beliebig wachsendenen und fallenden Argumenten x passiert,also nur,ob sie sich an Null annähern?
Würd mich sehr über eure Hilfe freuen!!!
Danke im Voraus,
datstina


        
Bezug
Kurvendiskussion e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 Mi 13.12.2006
Autor: leduart

Hallo datsina
Das erste mal sind so Aufgaben anscheinend schwer, aber nach dem Tip ein für alle Mal leicht: setze [mm] e^x=y; e^{2x}=y^2 [/mm]
und lös die entsprechende Gleichung. Am Ende dann x=lny fertig!
Gruss leduart

Bezug
                
Bezug
Kurvendiskussion e-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:07 Mi 13.12.2006
Autor: datstina

vielen dank,hat mir nach ein bisschen überlegen wirklich sehr weitergeholfen!
hab jetzt das richtige ergebnis raus,danke!
lg,
datstina

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de