www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Kurvenintegral
Kurvenintegral < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:02 Di 15.08.2006
Autor: Denny22

Aufgabe
  [mm] $\beta:[0,2] \to\IC$ [/mm] mit [mm] $\beta(t):=\begin{cases} 1+t(-i-1), & \mbox{für } t\in[0,1] \\ 1-t+i(t-2), & \mbox{für } t\in[1,2] \end{cases}$ [/mm]

Man berechne:

[mm] $\integral_{\beta}{\bruch{1}{z} dz}$ [/mm]

Hallo,

irgendwie komme ich bei der Aufgabe nicht weiter. Ich fasse meine Übelegungen einmal zusammen, die lediglich auf den Definitionen des Kurvenintegrals basieren:

Seien:

[mm] $\beta_1:[0,1]\to\IC$ [/mm] mit [mm] $\beta_1(t):=1+t(-i-1)$ [/mm]
[mm] $\beta_2:[1,2]\to\IC$ [/mm] mit [mm] $\beta_2(t):=1-t+i(t-2)$ [/mm]

dann ist:

[mm] $\beta:=\beta_1\oplus\beta_2$ [/mm]

eine zusammengesetzte stückweise glatte Kurve, wobei [mm] $\beta_1$ [/mm] und [mm] $\beta_2$ [/mm] für sich glatt sind.
Zur Berechnung:

[mm] $\integral_{\beta}{\bruch{1}{z} dz} [/mm] = [mm] \summe_{k=1}^{2}\integral_{\beta_k}{\bruch{1}{z} dz} [/mm] = [mm] \integral_{\beta_1}{\bruch{1}{z} dz} [/mm] + [mm] \integral_{\beta_2}{\bruch{1}{z} dz} [/mm] = [mm] \integral_{0}^{1}{\bruch{1}{1+t(-i-1)}*(-i-1) dt} [/mm] + [mm] \integral_{1}^{2}{\bruch{1}{1-t+i(t-2)}*(-1+i) dt} [/mm] =$ ?

Dort komme ich nun nicht mehr weiter. Bin verzweifelt im Selbststudium und danke jetzt schon einmal für eure Antworten.

Ciao Denny

        
Bezug
Kurvenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 12:34 Di 15.08.2006
Autor: Leopold_Gast

Über der unteren Halbebene, in der die Spur von [mm]\beta[/mm] liegt, besitzt [mm]f(z) = \frac{1}{z}[/mm] eine Stammfunktion, nämlich [mm]F(z) = \log{z}[/mm], wobei der Zweig des Logarithmus so zu wählen ist, daß [mm]- \pi \leq \arg{z} \leq 0[/mm] gilt. Für die Berechnung des Integrals kommt es nur auf Anfangs- und Endpunkt der Kurve an:

[mm]\int_{\beta}~\frac{\mathrm{d}z }{z} = \int_1^{-1}~\frac{\mathrm{d}z }{z} = \log{(-1)} - \log{1} = - \operatorname{i} \pi[/mm]

Wenn du das Integral ohne Verwendung dieser Zusammenhänge lösen willst, wird es komplizierter. Tip: Erweitere die Brüche mit dem konjugiert Komplexen, den ersten etwa mit [mm]1 + t \left( \operatorname{i} - 1 \right)[/mm]. Dann werden die Nenner reell und du kannst das Integral in Real- und Imaginärteil zerlegen.

Bezug
                
Bezug
Kurvenintegral: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:15 Di 15.08.2006
Autor: Denny22

Danke,

habs verstanden. Habe es auch einmal auf dem "komplizierten Weg" gelöst.

Ich danke nochmals für die Super-schnelle Antwort

Ciao

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de