Kurvenintegral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Berechnen Sie das angegebene Kurvenintegral
[mm] $$\oint(xy\,\textrm [/mm] dx + [mm] 2y\,\textrm [/mm] dy)$$ entlang des geschlossenen Weges:
$y = [mm] -\sin [/mm] x$ von [mm] \frac32\pi [/mm] nach [mm] \frac{\pi}{2}. [/mm] |
Ich habe nun eine Frage bzgl. Berechnung solcher Aufgaben (der Rückweg spielt jetzt mal keine Rolle).
Ich habe das so gemacht:
[mm] $$\oint (xy\,\textrm [/mm] dx + [mm] 2y\,\textrm [/mm] dy) = [mm] \int_K \vec f(\vec{x})\,d\vec [/mm] x$$ mit [mm] \vec f(\vec{x}) [/mm] = [mm] \left( \begin{array}{cc}xy \\ 2y\end{array}\right).
[/mm]
Weg A, also: [mm] $\vec [/mm] x = [mm] \left( \begin{array}{cc}t \\ -\sin t\end{array}\right)$
[/mm]
[mm] $$\Rightarrow \oint_A (-t*\sin [/mm] t - [mm] 2*\sin t)\,\textrm [/mm] dt$$ $$= [mm] \left[-\sin t + t*\cos t + 2*\cos t\right]_{\frac32\pi}^{\pi/2} [/mm] = -1-1 = [mm] \begin{array}{c}2\\\hline\hline\end{array}$$
[/mm]
Nun hatte ich heute mit paar anderen über solche Aufgabe geredet und diese rechnen die ganz anders (waren aber auch im Gegensatz zu mir in der Vorlesung ):
$ y = [mm] -\sin [/mm] x$, [mm] $\frac{\partial y}{\partial x} [/mm] = [mm] -\cos [/mm] x$ [mm] $\Rightarrow \partial [/mm] y = [mm] -\cos x\, \partial [/mm] x$
[mm] $$\oint(xy\,\textrm [/mm] dx + [mm] 2y\,\textrm [/mm] dy) = [mm] \oint_A (-x*\sin x\partial [/mm] x + [mm] 2*\sin x*\cos [/mm] x [mm] \partial [/mm] x)$$
$$= [mm] \left[ 2*\sin^2x - \sin x + x*\cos x \right]^{\frac32\pi}_{\pi/2} [/mm] = [mm] -3+1=\begin{array}{c}2\\\hline\hline\end{array}$$
[/mm]
Wie man sieht, kommt bei beiden Wegen das gleiche heraus. Ebenso auch bei Weg B, den ich hier jetzt nicht aufgezeichnet hab, liefert auch bei beiden dasselbe Ergebnis.
Was mich nur stutzig macht, ist, dass einmal die Stammfunktion [mm] $\left[ 2*\sin^2x - \sin x + x*\cos x \right]$ [/mm] und beim ersten mal [mm] $\left[-\sin t + t*\cos t + 2*\cos t\right]$ [/mm] lautet.
Bei Weg B unterscheiden sich die Stammfunktionen auch und auch nur in einem Teil, der Teil [mm] $-\sin [/mm] t + [mm] t*\cos [/mm] t$ kommt ja beide mal vor.
Ist der erste Weg nun falsch und ich habe nur zufällig beide male das selbe ergebnis bekommen, oder ist beides richtig.
Hoffe, jemand hat eine Antwort parat
Gruß
|
|
|
|
Hallo goldeagle,
> Berechnen Sie das angegebene Kurvenintegral
> [mm]\oint(xy\,\textrm dx + 2y\,\textrm dy)[/mm] entlang des
> geschlossenen Weges:
> [mm]y = -\sin x[/mm] von [mm]\frac32\pi[/mm] nach [mm]\frac{\pi}{2}.[/mm]
> Ich habe nun eine Frage bzgl. Berechnung solcher Aufgaben
> (der Rückweg spielt jetzt mal keine Rolle).
>
> Ich habe das so gemacht:
> [mm]\oint (xy\,\textrm dx + 2y\,\textrm dy) = \int_K \vec f(\vec{x})\,d\vec x[/mm]
> mit [mm]\vec f(\vec{x})[/mm] = [mm]\left( \begin{array}{cc}xy \\ 2y\end{array}\right).[/mm]
>
> Weg A, also: [mm]\vec x = \left( \begin{array}{cc}t \\ -\sin t\end{array}\right)[/mm]
>
> [mm]\Rightarrow \oint_A (-t*\sin t - 2*\sin t)\,\textrm dt[/mm] [mm]= \left[-\sin t + t*\cos t + 2*\cos t\right]_{\frac32\pi}^{\pi/2} = -1-1 = \begin{array}{c}2\\\hline\hline\end{array}[/mm]
Da ist wohl was verlorengegangen:
[mm]x=t \Rightarrow dx = dt[/mm]
[mm]y=-\sin\left(t\right) \Rightarrow dy = -\cos\left(t\right) \ dt[/mm]
Korrekt muss es deshalb heißen:
[mm]\oint (xy\,\textrm dx + 2y\,\textrm dy)=\oint_A (-t*\sin\left(t\right) + 2*\sin\left(t\right) \cos\left(t\right))\,\textrm dt[/mm]
[mm]=\left[-\sin\left(t\right)-\cos^{2}\left(t\right)+t*\cos\left(t\right)\right]^{\bruch{3 \pi}{2}}_{\bruch{\pi}{2}}=1-\left(-1\right)=2[/mm]
>
> Nun hatte ich heute mit paar anderen über solche Aufgabe
> geredet und diese rechnen die ganz anders (waren aber auch
> im Gegensatz zu mir in der Vorlesung ):
> [mm]y = -\sin x[/mm], [mm]\frac{\partial y}{\partial x} = -\cos x[/mm]
> [mm]\Rightarrow \partial y = -\cos x\, \partial x[/mm]
>
> [mm]\oint(xy\,\textrm dx + 2y\,\textrm dy) = \oint_A (-x*\sin x\partial x + 2*\sin x*\cos x \partial x)[/mm]
>
> [mm]= \left[ 2*\sin^2x - \sin x + x*\cos x \right]^{\frac32\pi}_{\pi/2} = -3+1=\begin{array}{c}2\\\hline\hline\end{array}[/mm]
[mm]= \left[ \red{1}*\sin^{2}\left(x\right) - \sin\left(x\right) + x*\cos\left(x\right) \right]^{\bruch{3\pi}{2}}_{\bruch{\pi}{2}} =2-0=2[/mm]
>
> Wie man sieht, kommt bei beiden Wegen das gleiche heraus.
> Ebenso auch bei Weg B, den ich hier jetzt nicht
> aufgezeichnet hab, liefert auch bei beiden dasselbe
> Ergebnis.
> Was mich nur stutzig macht, ist, dass einmal die
> Stammfunktion [mm]\left[ 2*\sin^2x - \sin x + x*\cos x \right][/mm]
> und beim ersten mal [mm]\left[-\sin t + t*\cos t + 2*\cos t\right][/mm]
> lautet.
> Bei Weg B unterscheiden sich die Stammfunktionen auch und
> auch nur in einem Teil, der Teil [mm]-\sin t + t*\cos t[/mm] kommt
> ja beide mal vor.
>
> Ist der erste Weg nun falsch und ich habe nur zufällig
> beide male das selbe ergebnis bekommen, oder ist beides
> richtig.
Nach dem ich meine Korrekturen bei Weg A und Weg B angebracht habe, siehst Du das beide Wege richtig sind.
>
> Hoffe, jemand hat eine Antwort parat
> Gruß
>
>
>
>
>
Gruß
MathePower
|
|
|
|