www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Kurvenintegral Parabel
Kurvenintegral Parabel < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegral Parabel: Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:06 Sa 01.06.2013
Autor: Epsilongroesser0

Aufgabe
Sei D das von [mm] x^2+y^2=1 [/mm] (x>=0) und [mm] y^2-2x=1 [/mm] begrenzte Gebiet und sei C die geschlossene Kurve die den Bereich D umrandet.
Sei v(x,y) = [mm] \begin{pmatrix} x^2 \\ xy \\ \end{pmatrix} [/mm]
Gesucht ist das Kurvenintegral v dx.


Hallo!

v soll ein Vektor sein.
Parametrisierung soll entgegen dem Uhrzeigersinn sein.

Den Kreis zu parametrisieren ist leicht, einfach auf Kreiskoordinaten umformen etc.

Bei der Parabel [mm] y^2-2x=1 [/mm] sieht meine Parametrisierung wie folgt aus:
[mm] \begin{pmatrix} (-0,5+(t^2)/2 \\ t \end{pmatrix} [/mm] t€[-1,1]

Die Ableitung nach t wäre also [mm] \begin{pmatrix} t\\ 1 \end{pmatrix} [/mm]

Jetzt rechne ich [mm] x^2 [/mm] => [mm] (0,25-0,5t^2+(t^2)/4) [/mm] und xy = [mm] t*(-0,5)+(t^2)/2) [/mm]

Danach Multipliziere ich [mm] x^2 [/mm] mit t und xy mit 1 und addiere die beiden Werte (Skalarprodukt) danach integriere ich von 1 bis -1

Anschließend addiere ich beide Kurvenintegrale und bin fertig.

Stimmt das so oder hab ich einen Denkfehler drinnen?

Besten Dank!

        
Bezug
Kurvenintegral Parabel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 Sa 01.06.2013
Autor: MathePower

Hallo Epsilongroesser0,

> Sei D das von [mm]x^2+y^2=1[/mm] (x>=0) und [mm]y^2-2x=1[/mm] begrenzte
> Gebiet und sei C die geschlossene Kurve die den Bereich D
> umrandet.
>  Sei v(x,y) = [mm]\begin{pmatrix} x^2 \\ xy \\ \end{pmatrix}[/mm]
>
> Gesucht ist das Kurvenintegral v dx.
>  
> Hallo!
>  
> v soll ein Vektor sein.
>  Parametrisierung soll entgegen dem Uhrzeigersinn sein.
>  
> Den Kreis zu parametrisieren ist leicht, einfach auf
> Kreiskoordinaten umformen etc.
>  
> Bei der Parabel [mm]y^2-2x=1[/mm] sieht meine Parametrisierung wie
> folgt aus:
>  [mm]\begin{pmatrix} (-0,5+(t^2)/2 \\ t \end{pmatrix}[/mm]
> t€[-1,1]
>  
> Die Ableitung nach t wäre also [mm]\begin{pmatrix} t\\ 1 \end{pmatrix}[/mm]
>  
> Jetzt rechne ich [mm]x^2[/mm] => [mm](0,25-0,5t^2+(t^2)/4)[/mm] und xy =
> [mm]t*(-0,5)+(t^2)/2)[/mm]
>  
> Danach Multipliziere ich [mm]x^2[/mm] mit t und xy mit 1 und addiere
> die beiden Werte (Skalarprodukt) danach integriere ich von
> 1 bis -1
>  
> Anschließend addiere ich beide Kurvenintegrale und bin
> fertig.

>


Bei dem anderen Kurvenintegral sind noch die Grenzen zu beachten.


> Stimmt das so oder hab ich einen Denkfehler drinnen?
>


Das stimmt so.


> Besten Dank!  


Gruss
MathePower

Bezug
                
Bezug
Kurvenintegral Parabel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 Sa 01.06.2013
Autor: Epsilongroesser0

Andere Kurvenintegral hätte die Grenzen 3pi/2 und pi/2 oder?



Bezug
                        
Bezug
Kurvenintegral Parabel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:55 Sa 01.06.2013
Autor: MathePower

Hallo Epsilogroesser0,

> Andere Kurvenintegral hätte die Grenzen 3pi/2 und pi/2
> oder?
>  


Wenn die rechte Seite der Skizze gemeint ist, ja.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de