www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Kurvenpunkte gesucht
Kurvenpunkte gesucht < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenpunkte gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 Do 17.02.2011
Autor: Foszwoelf

Aufgabe
f(x)= x / [mm] x^2+1 [/mm]

In welchen Kurvenpunkten schließt die Tangente mit der x-Achse einen Winkel von 56,3° ein

Habe erste Ableitung gebildet: f´(x) = [mm] -x^2+1 [/mm] / [mm] (x^2+1) [/mm] ^2

soweit ok ?

nun ist ja     tan alpha = f´(x)  

also 1,5= [mm] -x^2+1/(x^2+1)^2 [/mm]   wie rechne ich das jetzt aus

habe irgendwie raus   [mm] 1,5=-x^2-x^-4 [/mm]  ???


        
Bezug
Kurvenpunkte gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Do 17.02.2011
Autor: Cassipaya

Sorry, ich muss passen.

Deine Ableitung stimmt, soweit ich das beurteilen kann und auch deine Überlegung (tan(56.3)=1.4994 aber ok)

Wenn ich die Funktionen plotte, sehe ich aber keinen Punkt, der diese Bedingung erfüllt, die Antwort wäre also "in keinem Punkt" was etwas witzlos wäre.

Bist du sicher, dass du alles richtig abgeschrieben hast?

Gruss

Cassi


Bezug
        
Bezug
Kurvenpunkte gesucht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:02 Do 17.02.2011
Autor: Foszwoelf

mist war die falsche Funktion , der rest stimmt

f(x)= [mm] 2x^2/ [/mm] x+1


Bezug
                
Bezug
Kurvenpunkte gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:06 Do 17.02.2011
Autor: Foszwoelf

ableitung dann

[mm] 2x^2+4x/ (x+1)^2 [/mm]   oder ?

somit 1,5= [mm] 2x^2+4x*x^-2 [/mm]   -1    ??????

Bezug
                        
Bezug
Kurvenpunkte gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 18:10 Do 17.02.2011
Autor: Event_Horizon

Hallo!

Versuche die Substitution [mm] z=x^2, [/mm] dann bekommst du eine quadratische Gleichung, aus der du z bestimmen kannst. Anschließend kommst du durch Wurzelziehen auf x...

Bei deiner neuen Funktion sehe ich zwei Lösungen, geschätzt etwa bei +0,3 und -0,3...


Bezug
                                
Bezug
Kurvenpunkte gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:12 Do 17.02.2011
Autor: Foszwoelf

wie soll ich da substituieren ????

f(x)= [mm] 2x^2+4x* [/mm] x^-2   -1   stimmt die vereinfachung???

Bezug
                                        
Bezug
Kurvenpunkte gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Do 17.02.2011
Autor: Cassipaya

Die Vereinfachung ist etwas unschön geschrieben aber deine Gleichung stimmt schon:
[mm]1.5= (2x^2+4x)/ (x+1)^2 [/mm]

Jetzt formst du zuerst um, also mal [mm](x+1)^2 [/mm] und dann algebraisch umformen, so dass alle Zahlen und x auf der einen Seite des Gleichs stehen.

Ausmultiplizieren, bis du keine Klammern mehr stehen hast und dann mit der quadratischen Lösungsformel ausrechnen. Es gibt dir eine positive und eine negative Lösung.

Gruss Cassi


Bezug
                                                
Bezug
Kurvenpunkte gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:26 Do 17.02.2011
Autor: Foszwoelf

um den Bruch wegzubekommen muss is doch den nenner mal nehmen also:

[mm] fx=2x^2+4x*x^2 [/mm] +1 oder?

dann mache ich nach den ausmultipli.   substi.   und bekommen raus:

-0,34 ; 0.34 ; -1,45 ; 1,45 oder ?

Bezug
                                                        
Bezug
Kurvenpunkte gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 Do 17.02.2011
Autor: Cassipaya

Woher nimmst du jetzt plötzlich das fx und der nenner ist nicht [mm]x^2+1[/mm] sondern [mm](x+1)^2[/mm].

Ich versteh nicht worauf du hinauswillst.


Bezug
                                                                
Bezug
Kurvenpunkte gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:38 Do 17.02.2011
Autor: Foszwoelf

sollte f(x) heißen ....

ja aber wenn ich das die klammer  auflöse kommt doch raus [mm] x^2 [/mm] +1

stimmen die lösungen ???????????????

Bezug
                                                                        
Bezug
Kurvenpunkte gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 Do 17.02.2011
Autor: Cassipaya

nein, [mm](x+1)^2=(x^2+2x+1)[/mm]...


Bezug
                                                                                
Bezug
Kurvenpunkte gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:51 Do 17.02.2011
Autor: Foszwoelf

mist stimmt bin formel

muss ich dann also

[mm] 2x^2+4x *(x^2+2x+1) [/mm] ausmultiplizeiren ??

Bezug
                                                                                        
Bezug
Kurvenpunkte gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 01:45 Fr 18.02.2011
Autor: leduart

Hallo
NEIN!

du hattest doch die Gleichung
$ 1.5= [mm] (2x^2+4x)/ (x+1)^2 [/mm] $
die sollst du auf beiden Seiten mit [mm] (x+1)^2 [/mm] multiplizieren! dann hast du den Nenner los.
gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de