www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Kurze Frage
Kurze Frage < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurze Frage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:01 Mi 12.05.2010
Autor: kegel53

Aufgabe
Zeige: [mm] \lim_{x \to \infty}\ (\bruch{1}{2}\cdot{e^{2x}}-4e^x)=\infty [/mm]

Tag Leute,
ich weiß im Moment nicht mehr genau wie ich das in Oberstufen-Manier aufschreib. Vielleicht kann jemand helfen.
Also es gilt:

[mm] \lim_{x \to \infty}\ (\bruch{1}{2}\cdot{e^{2x}}-4e^x)=\bruch{1}{2}\dot{\lim_{x \to \infty}\ e^{2x}}-4\cdot{\lim_{x \to \infty}\ e^x}=\text{ ? } [/mm]

Wie mach ich hierbei weiter?? Ich kann ja schlecht [mm] \bruch{1}{2}\cdot{\infty}-4\cdot{\infty}=\infty [/mm] hinschreiben.
Aber wie schreib ich das mathematisch korrekt auf?
Vielen Dank schon mal.

        
Bezug
Kurze Frage: Antwort
Status: (Antwort) fertig Status 
Datum: 22:13 Mi 12.05.2010
Autor: ms2008de

Hallo,
> Zeige: [mm]\lim_{x \to \infty}\ (\bruch{1}{2}\cdot{e^{2x}}-4e^x)=\infty[/mm]

>  
> Tag Leute,
>  ich weiß im Moment nicht mehr genau wie ich das in
> Oberstufen-Manier aufschreib. Vielleicht kann jemand
> helfen.
>  Also es gilt:
>  
> [mm]\lim_{x \to \infty}\ (\bruch{1}{2}\cdot{e^{2x}}-4e^x)=\bruch{1}{2}\dot{\lim_{x \to \infty}\ e^{2x}}-4\cdot{\lim_{x \to \infty}\ e^x}=\text{ ? }[/mm]
>  
> Wie mach ich hierbei weiter?? Ich kann ja schlecht
> [mm]\bruch{1}{2}\cdot{\infty}-4\cdot{\infty}=\infty[/mm]
> hinschreiben.
>  Aber wie schreib ich das mathematisch korrekt auf?
>  Vielen Dank schon mal.

Naja, es ist [mm] e^{2x} [/mm] = [mm] e^{x+x} [/mm] = [mm] e^x* e^x, [/mm] also klammern wir doch mal aus:
[mm] \lim_{x \to \infty}\ (\bruch{1}{2}\cdot{e^{2x}}-4e^x) [/mm] = [mm] \lim_{x \to \infty} [e^x *(\bruch{1}{2}\cdot{e^{x}}-4)] [/mm] .
Ich hoffe nun ist es klar....

Viele Grüße

Bezug
                
Bezug
Kurze Frage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:27 Mi 12.05.2010
Autor: kegel53

Also dann gilt:

[mm] \lim_{x \to \infty}\ (\bruch{1}{2}\cdot{e^{2x}}-4e^x) [/mm] $  = $ [mm] \lim_{x \to \infty} [e^x \cdot{}(\bruch{1}{2}\cdot{e^{x}}-4)]=\infty\cdot{\infty}=\infty [/mm]

Schreibt man das dann so auf?

Bezug
                        
Bezug
Kurze Frage: Antwort
Status: (Antwort) fertig Status 
Datum: 10:06 Do 13.05.2010
Autor: ms2008de

Hallo,
> Also dann gilt:
>  
> [mm]\lim_{x \to \infty}\ (\bruch{1}{2}\cdot{e^{2x}}-4e^x)[/mm]  [mm]=[/mm]
> [mm]\lim_{x \to \infty} [e^x \cdot{}(\bruch{1}{2}\cdot{e^{x}}-4)]=\infty\cdot{\infty}=\infty[/mm]
>  
> Schreibt man das dann so auf?  

Könnte man so sagen, ja.

Viele Grüße

Bezug
        
Bezug
Kurze Frage: Antwort
Status: (Antwort) fertig Status 
Datum: 08:44 Fr 14.05.2010
Autor: fred97

Ich würde es so aufschreiben:   für x>0 ist:

  [mm] $\bruch{1}{2}e^{2x}-4e^x [/mm] > [mm] \bruch{1}{2}e^{2x}=\bruch{1}{2}(1+2x+\bruch{4x^2}{2!}+ [/mm] .....) >x $

FRED

Bezug
                
Bezug
Kurze Frage: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:28 Fr 14.05.2010
Autor: kegel53

Vielen Dank euch beiden!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de