www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Kvgz. der Binomialreihe
Kvgz. der Binomialreihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kvgz. der Binomialreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:18 Fr 31.08.2007
Autor: hilbert90

Aufgabe
Für welche [mm] \alpha\in \IC [/mm] und [mm] z\in \IC [/mm] mit |z|=1 konvergiert die Binomialreihe def durch [mm] \summe_{n=1}^{\infty}\vektor{n+\alpha \\ n}z^n [/mm] ?

Hallo zusammen,
der Einheitskreis ist ja der Rand des Konvergenzbereichs der Reihe völlig unabhängig von [mm] \alpha. [/mm] Die holomorphe Fkt, die dort durch die Reihe definiert wird, lautet [mm] (1-z)^{-\alpha-1}. [/mm] Die Frage ist also: Was passiert mit der Reihe auf dem Rand?
Wahrscheinlich gilt folgendes:
1.) abs Kvgz für: [mm] Re(\alpha)<-1 [/mm]
2.) Kvgz, aber nicht abs, für: -1 [mm] \le Re(\alpha)<0 [/mm] und [mm] z\not=1 [/mm]
3.) Divergenz für: [mm] Re(\alpha) \ge [/mm] 0 oder (-1 [mm] \le Re(\alpha)<0 [/mm] und z=1)

Ich bräuchte nun eine Begründung dafür. Ein vollständiger Beweis muss es natürlich nicht sein. Eher eine etwas detailliertere Idee. Benutzt werden kann im Übrigen folgende asymptotische Gleichheit [mm] \vektor{n+\alpha \\ n} \sim \bruch{n^\alpha}{\Gamma (\alpha+1)}, [/mm] falls nötig.

Also falls mir da irgendwer helfen kann, wär das echt mal spitze!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Kvgz. der Binomialreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Fr 31.08.2007
Autor: Hund

Hallo,

den Koeffizienten kannst du doch explizit angeben und dann Quotientenkriterium verwenden um deine Idee zu bestätigen, das ist doch eine gewöhnliche Potenzreihe.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
                
Bezug
Kvgz. der Binomialreihe: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:40 Fr 31.08.2007
Autor: hilbert90

Hallo Hund!
Dein Vorschlag löst möglicherweise nur einen kleinen Teil des Problems. Zumal man mit dem Quotientenkriterium ja nur absolute Konvergenz zeigt. Die liegt aber für [mm] Re(\alpha) \le [/mm] -1 gewiss nicht vor.
Hat also leider nicht wirklich geholfen...

Bezug
                        
Bezug
Kvgz. der Binomialreihe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Di 04.09.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de