www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - L-stetig - glm. konvergent
L-stetig - glm. konvergent < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

L-stetig - glm. konvergent: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:49 Sa 10.04.2010
Autor: AbraxasRishi

Aufgabe
Sei [mm](f_n)_{n\in N}[/mm] eine punktweise konvergente Funktionenfolge auf einem beschränkten Intervall und jedes Glied davon und die Grenzf. seien lipschitz-stetig mit einer gemeinsamen l-Konstanten L.Zeigen sie dass [mm] f_n [/mm] auch gleichmäßig konvergiert.

Hi,

mein Ansatz ist:

[mm]|f_n(y)-f(y)|\le|f_n(y)-f_n(x)|+|f(x)-f(y)+|f_n(x)-f(x)|<2L|x-y|+\frac{\epsilon}{2}\quad \forall n\ge n_0[/mm]

->[mm]|f_n(y)-f(y)|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon\quad \forall n\ge n_0 \wedge |x-y|\le\frac{\epsilon}{4L}[/mm]

Ich könnte nun jeden x so ein Intervall[mm] |x-y|\le\frac{\epsilon}{4L}[/mm] zuordnen, sodass die Gesamtheit der Intervalle eine abgeschlossene Überdeckung des beschränkten Intervalls bilden. Wenn diese dann auch endlich ist( Ist sie das?) kann ich ja das Maximum N der [mm] "n_0" [/mm] nehmen und so habe ich dann die glm. Konvergenz.Stimmt das soweit oder muss ich einen anderen Ansatz wählen?Würdet ihr mir in diesem Falle einen kleinen Tipp geben?

Vielen Dank für evt. Hilfe!

Angelika



        
Bezug
L-stetig - glm. konvergent: Antwort
Status: (Antwort) fertig Status 
Datum: 14:51 Sa 10.04.2010
Autor: Blech

Hi,

> dann die glm. Konvergenz.Stimmt das soweit oder muss ich
> einen anderen Ansatz wählen?Würdet ihr mir in diesem
> Falle einen kleinen Tipp geben?

Die Idee und Ausführung sind richtig, aber ich denke wir sollten uns die Reihenfolge nochmal anschauen, dann wird denk ich auch Deine Frage klar:

1. Uns wird ein [mm] $\epsilon$ [/mm] vorgegeben, das wir überall einhalten sollen.
2. Wir unterteilen das Intervall in Stücke der Breite [mm] $\frac{\epsilon}{4L}$, [/mm] mit den x jeweils in der Mitte der Stücke. Da das Intervall beschränkt ist und eine feste Breite hat, sind das automatisch endlich viele.*
3. Wir wählen das [mm] $n_0$ [/mm] passend wie von Dir beschrieben.
4. Daraus folgt dann durch Deine Ungleichungskette, daß [mm] $|f_n(y)-f(y)|<\epsilon$ $\forall y,\, \forall n\geq n_0$. [/mm]


*: man könnte die Stücke sogar breiter machen, bis zu [mm] $2*\frac{\epsilon}{4L}$ [/mm] Aber dann könnte es je nach Definition der verschiedenen Stetigkeiten mit [mm] $\leq$ [/mm] und $<$ Problemchen geben, und es kostet uns ja nichts, hier schmalere zu wählen. =)

ciao
Stefan



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de