www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - LGS 2x2 Determinantenverfahren
LGS 2x2 Determinantenverfahren < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS 2x2 Determinantenverfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 Sa 16.05.2009
Autor: michas-welt

Aufgabe
Lösen Sie unter Berücksichtigung aller Sonderfälle, benutzen Sie das Determinantenvefahren:

[mm]\left(a+1\right)x-y=1[/mm]
[mm]x+\left(a-1\right)y=0[/mm]

Hallo,

ich habe das Determinantenverfahren zwar grundsätzlich verstanden, kann aber mit dem "a" nichts anfangen. Ich habe für diese Aufgabe auch keinen sinnvollen Lösungsansatz, da ich mir nicht erklären kann wie ich das "a" in die Matrix einsetzen soll.

Die Aufgabe ist aus einem Studienheft eines Fernlehrinstitutes.

Ich Danke im Vorraus wie verrückt!!!




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
LGS 2x2 Determinantenverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Sa 16.05.2009
Autor: Tyskie84

Hallo,

Stelle zunächst die Matrix auf:

[mm] D=\vmat{\pmat{(a+1) & -1 \\ 1 & (a-1)}}. [/mm] Dann normal die Determinante ausrechnen. Jetzt kannst du sehen welche Zahl du ausschließen musst damit die Determinante [mm] \not= [/mm] 0 ist. Kommst du nun weiter?

[hut] Gruß

Bezug
                
Bezug
LGS 2x2 Determinantenverfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:40 Sa 16.05.2009
Autor: michas-welt

Erstmal Danke für die schnelle Antwort!!!

Ich komme jetzt aber auch nur bis zu folgendem Punkt.

[mm]D= \left(a+1\right)*\left(a-1\right) - -1*1[/mm]
[mm]D=a²-1a+1a-1[/mm]

Ich denke das a nicht -1;1 sein darf. Da sonst ja Null rauskommt.

Aber wie rechne ich nun weiter? Irgendwie verwirrt mich diese Aufgabe.

Gruß Micha

Bezug
                        
Bezug
LGS 2x2 Determinantenverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:01 Sa 16.05.2009
Autor: MathePower

Hallo michas-welt,

> Erstmal Danke für die schnelle Antwort!!!
>  
> Ich komme jetzt aber auch nur bis zu folgendem Punkt.
>  
> [mm]D= \left(a+1\right)*\left(a-1\right) - -1*1[/mm]
>  [mm]D=a²-1a+1a-1[/mm]
>  
> Ich denke das a nicht -1;1 sein darf. Da sonst ja Null
> rauskommt.


Schau nochmal genauer hin.


>  
> Aber wie rechne ich nun weiter? Irgendwie verwirrt mich
> diese Aufgabe.
>  
> Gruß Micha


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de