www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - LGS Abhängigkeit
LGS Abhängigkeit < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS Abhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:19 Di 29.07.2014
Autor: D-C

Aufgabe
Bestimmung der Lösungsmenge des LGS über [mm] \IR [/mm] mit den Unbestimmten x1,x2,x3,x4,x5 in Abhängigkeit von a1,a2,a3 [mm] \in \IR [/mm]

   x1+x2          -x5+a1=0
  -x1-x2+2x3 +x4+  x5+a2=0
-2x1-2x2+6x3+3x4+ 2x5+a3=0

Ich habe zuerst a1,a2,a3 auf die rechte Seite gebracht und dann die linke Seite auf Zeilestufenform gebracht und erhalten:

1 1 0 0 -1 | -a1
0 0 2 1  0 | -a1-a2
0 0 0 0  0 |        a2-a3

Ist das Vorgehen soweit richtig? Und was sagt mir das über die Lösungsmenge? :

Wenn a2-a3 [mm] \not= [/mm] 0 , dann ist das LGS unlösbar und
wenn a2-a3 = 0 , dann x3 und x4 beliebige Werte und es gibt unendlich viele Lösungen ?

Gruß
D-C


        
Bezug
LGS Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 Di 29.07.2014
Autor: MathePower

Hallo D-C,

> Bestimmung der Lösungsmenge des LGS über [mm]\IR[/mm] mit den
> Unbestimmten x1,x2,x3,x4,x5 in Abhängigkeit von a1,a2,a3
> [mm]\in \IR[/mm]
>  
> x1+x2          -x5+a1=0
>    -x1-x2+2x3 +x4+  x5+a2=0
>   -2x1-2x2+6x3+3x4+ 2x5+a3=0
>  Ich habe zuerst a1,a2,a3 auf die rechte Seite gebracht und
> dann die linke Seite auf Zeilestufenform gebracht und
> erhalten:
>  
> 1 1 0 0 -1 | -a1
>  0 0 2 1  0 | -a1-a2
>  0 0 0 0  0 |        a2-a3
>  
> Ist das Vorgehen soweit richtig? Und was sagt mir das über
> die Lösungsmenge? :
>  


Die letzte Zeile stimmt nicht.

Poste dazu die bisherigen Rechenschritte.


> Wenn a2-a3 [mm]\not=[/mm] 0 , dann ist das LGS unlösbar und
>  wenn a2-a3 = 0 , dann x3 und x4 beliebige Werte und es
> gibt unendlich viele Lösungen ?
>  
> Gruß
>  D-C

>


Gruss
MathePower  

Bezug
                
Bezug
LGS Abhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:44 Di 29.07.2014
Autor: D-C

Stimmt, da hab ich wohl die a vergessen richtig zu berechnen...

1       1 0 0 -1  | -a1
-1     -1 2 1 1   | -a2   |+ zI
-2 -2 6 3 2   | -a3   |+ 2·zI

1 1 0 0 -1  | -a1
0 0 2 1 0   | -a2-a1
0 0 6 3 0   | -a3-2*a1 | :3

1 1 0 0 -1  |-a1
0 0 2 1 0   |-a2-a1
0 0 2 1 0   | -1/3*a3-2/3*a1  | - zII

1 1 0 0 -1  | -a1
0 0 2 1 0   | -a2-a1
0 0 0 0 0    |-1/3*a3+a2+1/3*a1

Bezug
                        
Bezug
LGS Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Di 29.07.2014
Autor: schachuzipus

Hallo,

> Stimmt, da hab ich wohl die a vergessen richtig zu
> berechnen...

>

> 1 1 0 0 -1 | -a1
> -1 -1 2 1 1 | -a2 |+ zI
> -2 -2 6 3 2 | -a3 |+ 2·zI

>

> 1 1 0 0 -1 | -a1
> 0 0 2 1 0 | -a2-a1
> 0 0 6 3 0 | -a3-2*a1 | :3

Oder -3*ZII ... Dann hast du keine Brüche ...

>

> 1 1 0 0 -1 |-a1
> 0 0 2 1 0 |-a2-a1
> 0 0 2 1 0 | -1/3*a3-2/3*a1 | - zII

>

> 1 1 0 0 -1 | -a1
> 0 0 2 1 0 | -a2-a1
> 0 0 0 0 0 |-1/3*a3+a2+1/3*a1

[ok]

Stimmt!

Tipp: Rechne wieder 3*ZIII, dann hast du "schönere" Zahlen ;-)

Gruß

schachuzipus

Bezug
                                
Bezug
LGS Abhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:56 Di 29.07.2014
Autor: D-C

Ja das könnte man noch machen, also

wäre dann die letzte Zeile

0x1+ 0x2+ 0x3 +0x4 +0x5  = -a3 +3a2 +a1

Wenn -a3 +3a2 +a1 $ [mm] \not= [/mm] $ 0 , dann ist das LGS unlösbar und
wenn -a3 +3a2 +a1 = 0 , dann x4 und x5 beliebige Werte und es gibt unendlich viele Lösungen

Stimmt das dann so, oder fehlt da noch was?

Gruß
D-C

Bezug
                                        
Bezug
LGS Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:00 Di 29.07.2014
Autor: schachuzipus

Hallo nochmal,

> Ja das könnte man noch machen, also

>

> wäre dann die letzte Zeile

>

> 0x1+ 0x2+ 0x3 +0x4 +0x5 = -a3 +3a2 +a1 [ok]

>

> Wenn -a3 +3a2 +a1 [mm]\not=[/mm] 0 , dann ist das LGS unlösbar und
> wenn -a3 +3a2 +a1 = 0 , dann x4 und x5 beliebige Werte und
> es gibt unendlich viele Lösungen

Ja, aber es ist noch eine von den drei verbleibenden Variaben frei wählbar - du hast ja nur noch 2 Gleichungen ...

>

> Stimmt das dann so, oder fehlt da noch was?

Bestimme mal die allg. Lösungsmenge im Falle [mm] $a_1+3a_2-a_3=0$ [/mm]

Das sollst du ja lt. Aufgabenstellug wohl tun ;-)

>

> Gruß
> D-C

LG

schachuzipus

Bezug
                                                
Bezug
LGS Abhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 Di 29.07.2014
Autor: D-C

Stimmt da fehlt ja noch eine Variable..

Also, x1 und x3 bleiben als unbekannt stehen.
x2,x4 und x5 als Parameter x2=s, x4=t , x5=u .

Damit:
x1+s-u=-a1
2x3+t=-a1-a2

[mm] \vektor{x1 \\ x2 \\ x3 \\ x4 \\ x5 } [/mm] = [mm] \vektor{-a1 \\ 0 \\ -a1-a2 \\ 0 \\ 0 } [/mm] + [mm] s*\vektor{-1 \\ 1 \\ 0 \\ 0 \\ 0 } [/mm] + [mm] t*\vektor{0 \\ 0 \\ -1/2 \\ 1 \\ 0 } [/mm] + [mm] u*\vektor{1 \\ 0 \\ 0 \\ 0 \\ 1 } [/mm]

Gruß
D-C

Bezug
                                                        
Bezug
LGS Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:40 Di 29.07.2014
Autor: schachuzipus

Hallo nochmal,

> Stimmt da fehlt ja noch eine Variable..

>

> Also, x1 und x3 bleiben als unbekannt stehen.
> x2,x4 und x5 als Parameter x2=s, x4=t , x5=u .

>

> Damit:
> x1+s-u=-a1
> 2x3+t=-a1-a2

>

> [mm]\vektor{x1 \\ x2 \\ x3 \\ x4 \\ x5 }[/mm] = [mm]\vektor{-a1 \\ 0 \\ \red{-a1-a2} \\ 0 \\ 0 }[/mm] + [mm]s*\vektor{-1 \\ 1 \\ 0 \\ 0 \\ 0 }[/mm] + [mm]t*\vektor{0 \\ 0 \\ -1/2 \\ 1 \\ 0 }[/mm] + [mm]u*\vektor{1 \\ 0 \\ 0 \\ 0 \\ 1 }[/mm]

Ja, das habe ich fast genauso.

Aber du teilst ja da bei [mm]x_3[/mm] durch 2, das wirkt sich auch auf [mm]-a_1-a_2[/mm] aus, da muss [mm]1/2(-a_1-a_2)[/mm] stehen ...

>

> Gruß
> D-C

Gruß

schachuzipus

Bezug
                                                                
Bezug
LGS Abhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:12 Di 29.07.2014
Autor: D-C

Ok danke , die Hinweise haben mir geholfen. Dann weiß ich jetzt, was genau zu tun ist, um solche Aufgaben zu lösen. : )

Gruß
D-C

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de