www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - LGS irgendwie sauschwer ;)
LGS irgendwie sauschwer ;) < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS irgendwie sauschwer ;): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:06 Mi 25.08.2004
Autor: DerHochpunkt

Hier hab ich mal ne Hausaufgabe! Vielleicht bekommt ihr das ja raus, ich bin kläglich gescheitert. :)

2a - 4b - 5c + 2d = 2
a  - 2b + 3c -   d = -3
3a - 6b -  2c +  d = -1

durch Gauss erhalte ich

a - 2b + 3c -    d = -3  und
         - 11c + 4d =  8

UND NUN? Ich habe 2 Gleichungen aber 4 Variablen...



UND DIE ZWEITE AUFGABE:

[mm] 2x\1 [/mm] + [mm] x\2 [/mm] + [mm] x\3 [/mm] = 1  und
[mm] x\1 [/mm] + [mm] tx\2 [/mm] + [mm] tx\3 [/mm] = 0

dabei heißt [mm] x\1 [/mm] einfach, dass es sich um x1 handelt [mm] x\2 [/mm] ist x2 usw...

Bestimme t so dass keine / eine und unendl viele Lösg. vorliegen

KEINEN SCHIMMER WIE MAN AN DIE SACHE HERANGEHT...

Liebe Grüße, DaHochpkt.

        
Bezug
LGS irgendwie sauschwer ;): Antwort
Status: (Antwort) fertig Status 
Datum: 16:35 Mi 25.08.2004
Autor: AT-Colt

Hallo DerHochpunkt,

wenn Du mehr Variablen als Gleichungen hast, bekommst Du - sofern das LGS lösbar ist - eine Lösungsschar, also eine Lösung in Abhängikeit einer der Variablen (manchmal auch mehrerer der Variablen)...

Ich schreibe Dein Problem mal ein wenig um, dann ists leichter zu rechnen:

[mm] $\pmat{1 & -2 & 3 & -1 & -3 \\ 2 & -4 & -5 & 2 & 2 \\ 3 & -6 & -2 & 1 & -1} [/mm] $

Dabei ist die letzte Spalte die Lösung der jeweiligen Gleichung.

Jetzt eliminierst Du in der zweiten und dritten Zeile das $a$ und erhälst:

$pmat{1 & -2 & 3 & -1 & -3 [mm] \\ [/mm] 0 & 0 & -11 & 4 & 8 [mm] \\ [/mm] 0 & 0 & -11 & 4 & 8}$

Soweit warst Du ja schon, jetzt weisst Du, dass $c$ von $d$ abhängt (oder umgekehrt) und dass gilt: $d = [mm] \bruch{8 + 11c}{4}$ [/mm]

Dir bleibt noch die Gleichung
$a - 2*b + 3*c - 1*d = -3$

Hier kannst Du die erlangten Ergebnisse einsetzen:
$a - 2*b + [mm] \bruch{12*c}{4} [/mm] - [mm] \bruch{8 + 11*c}{4} [/mm] = -3$
[mm] \gdw [/mm]
$a = -3 + 2*b + [mm] \bruch{8 - c}{4} [/mm] = 2*b - [mm] \bruch{c}{4} [/mm] - 1$

Damit haben Lösungen Deine Gleichungssystems die (zugegebenermaßen etwas unschöne) Form:

$IL = [mm] \{\vektor{2*b - \bruch{c}{4} - 1 \\ b \\ c \\ 2 + \bruch{11*c}{4}}| b,c \in \IR \}$ [/mm]


Bei Deiner zweiten Aufgabe musst Du quasi das Gleichungssystem soweit lösen, wie es geht, dabei dürfte wieder eine Lösungsschar rauskommen.
Dann musst Du diejenigen t bestimmen, für die die Lösung nicht definiert ist (Division durch null, Wurzel einer negativen Zahl, falsche Aussage), dann hast Du die t für "keine Lösung", findest Du die t, für die die Lösung von nichts anderem mehr abhängt, hast Du die t für "eine Lösung" gefunden, sollten bei einigen t noch Abhängigkeiten von einer anderen Variable auftreten, sind das heisse Kandidaten für "unendlich viele Lösungen".

Probier es mal damit.

greetz

AT-Colt


Bezug
        
Bezug
LGS irgendwie sauschwer ;): Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Mi 25.08.2004
Autor: Fermat2k4

Hi !

Einfach die 2. Gleichung mit -2 multiplizieren - schon ist der Spuk vorbei !

Gruß

Alex

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de