www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Matlab" - LGS lösen mit Matlab
LGS lösen mit Matlab < Matlab < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS lösen mit Matlab: Hilfe, Korrektur, Tipp
Status: (Frage) beantwortet Status 
Datum: 14:21 Sa 20.10.2012
Autor: Mija

Aufgabe
Wir sollen folgende Funktionen in Matlab implementieren:
1. Eine Funktion function[x]=forwardSub(A,b), die die Vorwärtssubstitution darstellt mit A einer linken unteren Dreiecksmatrix.
2. Eine Funktion function[x]=backwardSub(A,b), die die Rückwärtssubstitution darstellt mit A einer rechten oberen Dreiecksmatrix.
3. Eine Funktion function[L,R,p] = LRZerl(A) für die LR-Zerlegung von A mit der Permutationsmatrix p.
4. Eine Funktion function [x] = sol(A,b) zum Lösen des LGS Ax=b nach x (Also das Zusammenbringen der ersten drei Funktionen in eine Funktion)


Nun habe ich das Problem, dass meine ersten drei Funktionen im Einzelnen alle funktionieren und das ausspucken, was sie sollen.

Jedoch habe ich nun Probleme meine vierte Funktion zu implementieren. Dort bekomme ich als c (durch die Vorwärtssubstitution) etwas falsches raus und das gleiche später mit x (bei der Rückwärtssubstitution) auch nochmal.

Wo ist mein Fehler?

Hier sind mal alle Funktionen:

1.
function[x] = forwardSub(A,b)
% das ist die Vorwaertssubstitution zur Loesung des linearen
% Gleichungssystems Ax=b
% A soll die Gestalt einer linkeren unteren Dreiecksmatrix haben

[m,n]=size(A);
s=length(b);

if m~=n
    error('Die Matrix A ist keine quadratische Matrix')
end

if ((s~=m) | (s~=n))
    error('Die Dimension der Matrix und die Dimension des Vektors stimmen nicht überein')
end

x=zeros(n,1);
x(1)=b(1)/A(1,1);

for j=2:n   % j-te Zeile
    summe=0;
    for k=1:j-1
        summe=summe+A(j,k)*x(k);
    end
    x(j)=(b(j)-summe)/A(j,j);
end
c=x

L=A;
save forwardSub

end


2.
function[x] = backwardSub(A,b)
% das ist die Rueckwaertssubstitution zur Loesung des linearen
% Gleichungssystems Ax=b
% A soll die Gestalt einer rechten oberen Dreiecksmatrix haben

c=b;

[m,n]=size(A);
s=length(c);

if m~=n
    error('Die Matrix A ist keine quadratische Matrix')
end

if ((s~=m) | (s~=n))
    error('Die Dimension der Matrix und die Dimension des Vektors stimmen nicht überein')
end

x=zeros(n,1);
x(n)=c(n)/A(n,n);

for j=n-1:-1:1   % j-te Zeile
    summe=0;
    for k=j+1:n
        summe=summe+A(j,k)*x(k);
    end
    x(j)=(c(j)-summe)/A(j,j);
end
x

R=A;
save backwardSub

end


3.
function [L,R,p] = LRZerl(A)

amax=max(max(abs(A)));
n=size(A,1);
eps=1e-14;
p=[1:n]';
for j=1:n-1
    absajj=abs(A(p(j),j));
    s=j;
% Elimination
    for i=j+1:n   % i-te Zeile
        if abs(A(p(i),j)>absajj)
            s=i;
            absajj=abs(A(p(i),j));
        end
    end
    if absajj<eps*amax
        fprintf(1,'Warnung: Matrix fast [mm] singulaer!\n'); [/mm]
    end
    ps=p(s);
    p(s)=p(j);
    p(j)=ps;
    ajj=A(p(j),j);
    for i=j+1:n   % i-te Zeile
        lij=A(p(i),j)/ajj;
        for k=j+1:n
            A(p(i),k)=A(p(i),k)-lij*A(p(j),k);
        end
    A(p(i),j)=lij;
    end
end
R=triu(A(p,:))
L=eye(n)+tril(A(p,:),-1)
p

save LRZerl

end


4.
function [x] = sol(A,b)

A=input('Eingabe von A: ');
b=input('Eingabe von b: ');

LRZerl(A);
load LRZerl p
b=b(p)
save sol
load sol b
forwardSub(A,b);
load forwardSub L c
save sol
load sol c
b=c;
backwardSub(A,b);

end


Hinweis: Ich habe als Beispiel immer die Matrix

$A = [mm] \pmat{ 2 & 4 & 1 \\ 1 & 2 & 4 \\ 4 & 1 & 2 }$ [/mm] und [mm] $b=\vektor{13 \\ 17 \\ 12}$ [/mm] verwendet.

Dort müssten rauskommen

[mm] $L=\pmat{ 1 & 0 & 0 \\ 0.5 & 1 & 0 \\ 0.25 & 0.5 & 1 }$, $R=\pmat{ 4 & 1 & 2 \\ 0 & 3.5 & 0 \\ 0 & 0 & 3.5}$, $p=\vektor{3 \\ 1 \\ 2}$, $c=\vektor{12 \\ 7 \\ 10.5}$, $x=\vektor{1 \\ 2 \\ 3}$ [/mm]


Ich würde mich sehr freuen, wenn mir jemand weiterhelfen könnte.

        
Bezug
LGS lösen mit Matlab: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 Sa 20.10.2012
Autor: MathePower

Hallo Mija,

> Wir sollen folgende Funktionen in Matlab implementieren:
>  1. Eine Funktion function[x]=forwardSub(A,b), die die
> Vorwärtssubstitution darstellt mit A einer linken unteren
> Dreiecksmatrix.
>  2. Eine Funktion function[x]=backwardSub(A,b), die die
> Rückwärtssubstitution darstellt mit A einer rechten
> oberen Dreiecksmatrix.
>  3. Eine Funktion function[L,R,p] = LRZerl(A) für die
> LR-Zerlegung von A mit der Permutationsmatrix p.
>  4. Eine Funktion function [x] = sol(A,b) zum Lösen des
> LGS Ax=b nach x (Also das Zusammenbringen der ersten drei
> Funktionen in eine Funktion)
>  Nun habe ich das Problem, dass meine ersten drei
> Funktionen im Einzelnen alle funktionieren und das
> ausspucken, was sie sollen.
>  
> Jedoch habe ich nun Probleme meine vierte Funktion zu
> implementieren. Dort bekomme ich als c (durch die
> Vorwärtssubstitution) etwas falsches raus und das gleiche
> später mit x (bei der Rückwärtssubstitution) auch
> nochmal.
>  
> Wo ist mein Fehler?
>  
> Hier sind mal alle Funktionen:
>  
> 1.
>  function[x] = forwardSub(A,b)
>  % das ist die Vorwaertssubstitution zur Loesung des
> linearen
>  % Gleichungssystems Ax=b
>  % A soll die Gestalt einer linkeren unteren Dreiecksmatrix
> haben
>  
> [m,n]=size(A);
>  s=length(b);
>  
> if m~=n
>      error('Die Matrix A ist keine quadratische Matrix')
>  end
>  
> if ((s~=m) | (s~=n))
>      error('Die Dimension der Matrix und die Dimension des
> Vektors stimmen nicht überein')
>  end
>  
> x=zeros(n,1);
>  x(1)=b(1)/A(1,1);
>  
> for j=2:n   % j-te Zeile
>      summe=0;
>      for k=1:j-1
>          summe=summe+A(j,k)*x(k);
>      end
>      x(j)=(b(j)-summe)/A(j,j);
>  end
>  c=x
>  
> L=A;
>  save forwardSub
>  
> end
>  
>
> 2.
> function[x] = backwardSub(A,b)
>  % das ist die Rueckwaertssubstitution zur Loesung des
> linearen
>  % Gleichungssystems Ax=b
>  % A soll die Gestalt einer rechten oberen Dreiecksmatrix
> haben
>  
> c=b;
>  
> [m,n]=size(A);
>  s=length(c);
>  
> if m~=n
>      error('Die Matrix A ist keine quadratische Matrix')
>  end
>  
> if ((s~=m) | (s~=n))
>      error('Die Dimension der Matrix und die Dimension des
> Vektors stimmen nicht überein')
>  end
>  
> x=zeros(n,1);
>  x(n)=c(n)/A(n,n);
>  
> for j=n-1:-1:1   % j-te Zeile
>      summe=0;
>      for k=j+1:n
>          summe=summe+A(j,k)*x(k);
>      end
>      x(j)=(c(j)-summe)/A(j,j);
>  end
>  x
>  
> R=A;
>  save backwardSub
>  
> end
>  
>
> 3.
> function [L,R,p] = LRZerl(A)
>  
> amax=max(max(abs(A)));
>  n=size(A,1);
>  eps=1e-14;
>  p=[1:n]';
>  for j=1:n-1
>      absajj=abs(A(p(j),j));
>      s=j;
>  % Elimination
>      for i=j+1:n   % i-te Zeile
>          if abs(A(p(i),j)>absajj)
>              s=i;
>              absajj=abs(A(p(i),j));
>          end
>      end
>      if absajj<eps*amax
>          fprintf(1,'Warnung: Matrix fast [mm]singulaer!\n');[/mm]
>      end
>      ps=p(s);
>      p(s)=p(j);
>      p(j)=ps;
>      ajj=A(p(j),j);
>      for i=j+1:n   % i-te Zeile
>          lij=A(p(i),j)/ajj;
>          for k=j+1:n
>              A(p(i),k)=A(p(i),k)-lij*A(p(j),k);
>          end
>      A(p(i),j)=lij;
>      end
>  end
>  R=triu(A(p,:))
>  L=eye(n)+tril(A(p,:),-1)
>  p
>  
> save LRZerl
>  
> end
>  
>
> 4.
> function [x] = sol(A,b)
>  
> A=input('Eingabe von A: ');
>  b=input('Eingabe von b: ');
>  
> LRZerl(A);
>  load LRZerl p


Nach diesem Befehl ist die Matrix L immer noch die Matrix A.


>  b=b(p)
>  save sol
>  load sol b
>  forwardSub(A,b);
>  load forwardSub L c
>  save sol
>  load sol c
>  b=c;
>  backwardSub(A,b);
>  
> end
>  
>
> Hinweis: Ich habe als Beispiel immer die Matrix
>  
> [mm]A = \pmat{ 2 & 4 & 1 \\ 1 & 2 & 4 \\ 4 & 1 & 2 }[/mm] und
> [mm]b=\vektor{13 \\ 17 \\ 12}[/mm] verwendet.
>  
> Dort müssten rauskommen
>  
> [mm]L=\pmat{ 1 & 0 & 0 \\ 0.5 & 1 & 0 \\ 0.25 & 0.5 & 1 }[/mm],
> [mm]R=\pmat{ 4 & 1 & 2 \\ 0 & 3.5 & 0 \\ 0 & 0 & 3.5}[/mm],
> [mm]p=\vektor{3 \\ 1 \\ 2}[/mm], [mm]c=\vektor{12 \\ 7 \\ 10.5}[/mm],
> [mm]x=\vektor{1 \\ 2 \\ 3}[/mm]
>  
>
> Ich würde mich sehr freuen, wenn mir jemand weiterhelfen
> könnte.


Gruss
MathePower

Bezug
                
Bezug
LGS lösen mit Matlab: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:00 Sa 20.10.2012
Autor: Mija

Suuuper, vielen Dank für den Hinweis, es funktioniert jetzt alles, jippie!! :)

Bezug
        
Bezug
LGS lösen mit Matlab: Warum?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:11 Mo 22.10.2012
Autor: Loddar


> Gelöscht..

Und warum? Schöne Form von Egoismus! [motz]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de