www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - LGS mit Variable?
LGS mit Variable? < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS mit Variable?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 Di 08.06.2004
Autor: nevinpol

Hallo,

an alle die lineare Gleichungssysteme lieben :-) .

Aufgabe:

Bestimmen Sie, für welche $t [mm] \in \IR$ [/mm] das folgende lineare Gleichungssystem lösbar ist?

[mm] $2x_1 [/mm] + [mm] 4x_2 [/mm] + [mm] 2x_3 [/mm] = 12t$
[mm] $2x_1 [/mm] + [mm] 12x_2 [/mm] + [mm] 7x_3 [/mm] = 12t + 7$
[mm] $x_1 [/mm] + [mm] 10x_2 [/mm] + [mm] 6x_3 [/mm] = 7t+8$

Meine Lösung:

[mm] \begin{pmatrix} 2 & 4 & 2 \\ 2 & 12 & 7 \\ 1 & 10 & 6 \end{pmatrix} \begin{pmatrix} 12t \\ 12t+7 \\ 7t+8 \end{pmatrix} [/mm] 3. Zeile mit 2 multiplizieren:

[mm] \begin{pmatrix} 2 & 4 & 2 \\ 2 & 12 & 7 \\ 2 & 20 & 12 \end{pmatrix} \begin{pmatrix} 12t \\ 12t+7 \\ 14t+16 \end{pmatrix} [/mm] 1. Zeile von der 2. Zeile subtrahieren:


[mm] \begin{pmatrix} 2 & 4 & 2 \\ 0 & 8 & 5 \\ 2 & 20 & 12 \end{pmatrix} \begin{pmatrix} 12t \\ 7 \\ 14t+16 \end{pmatrix} [/mm] 1. Zeile von der 3. Zeile subtrahieren:



[mm] \begin{pmatrix} 2 & 4 & 2 \\ 0 & 8 & 5 \\ 0 & 16 & 10 \end{pmatrix} \begin{pmatrix} 12t \\ 7 \\ 2t+16 \end{pmatrix} [/mm] 3. Zeile durch 2 dividieren:

[mm] \begin{pmatrix} 2 & 4 & 2 \\ 0 & 8 & 5 \\ 0 & 8 & 5 \end{pmatrix} \begin{pmatrix} 12t \\ 7 \\ t+8 \end{pmatrix} [/mm]

Das Lineare Gleichungssystem sieht nun wie folgt aus:

(1) [mm] $x_1 [/mm] + [mm] 2x_2 [/mm] + [mm] x_3 [/mm] = 6t$
(2) [mm] $8x_2 [/mm] + [mm] 5x_3 [/mm] = 7$
(3) [mm] $8x_2 [/mm] + [mm] 5x_3 [/mm] = t+8$

(2) minus (3) = (4) $0= 7-(t+8)$
[mm] $\Rightarrow [/mm] 0= 7-t-8$
[mm] $\Rightarrow [/mm] 0= -t-1$
[mm] $\Rightarrow [/mm] t= -1$

Für $t=-1$ ist das lineare Gleichungssystem lösbar.
$t=-1$ setze ich in das lineare Gleichungssystem :


(1) [mm] $x_1 [/mm] + [mm] 2x_2 [/mm] + [mm] x_3 [/mm] = -6$
(2) [mm] $8x_2 [/mm] + [mm] 5x_3 [/mm] = 7$
(3) [mm] $8x_2 [/mm] + [mm] 5x_3 [/mm] = 7$

Ich setze [mm] $x_1=1$ [/mm] in (1):

(4) [mm] $1+2x_2+x_3=-6$ [/mm]
[mm] $\Rightarrow 2x_2+x_3=-7$ [/mm]

(4) mal 4 = (4) [mm] $8x_2 [/mm] + [mm] 4x_3 [/mm] = -28$

(2) minus (5) = (6) [mm] $x_3 [/mm] = 35$

Ich setze [mm] $x_1=1$ [/mm] und [mm] $x_3=35$ [/mm] in (1) ein:

(7) [mm] $1+2x_2+35 [/mm] = -6$
[mm] $\Rightarrow 2x_2 [/mm] = -42$
[mm] $\Rightarrow x_2 [/mm] = -21$

Für $t=-1$ sieht die Lösung des linearen Gleichungssystems so aus:

[mm] $L=\{ (1,-21,35)\}$ [/mm]

Könnte ich nun so etwas schreiben und wie soll ich das am Ende formulieren?

[mm] $L_t=\{ (-t,21t,-35t)\}$ [/mm]


Vielen Dank und schönen Tag noch an Alle

nevinpol





        
Bezug
LGS mit Variable?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:36 Di 08.06.2004
Autor: Marc

Hallo nevinpol,

> Bestimmen Sie, für welche $t [mm] \in \IR$ [/mm] das folgende lineare
> Gleichungssystem lösbar ist?
>  
> [mm] $2x_1 [/mm] + [mm] 4x_2 [/mm] + [mm] 2x_3 [/mm] = 12t$
>  [mm] $2x_1 [/mm] + [mm] 12x_2 [/mm] + [mm] 7x_3 [/mm] = 12t + 7$
>  [mm] $x_1 [/mm] + [mm] 10x_2 [/mm] + [mm] 6x_3 [/mm] = 7t+8$
>  
> Meine Lösung:
>  
> [mm] > \begin{pmatrix} > 2 & 4 & 2 \\ > 2 & 12 & 7 \\ > 1 & 10 & 6 > \end{pmatrix} \begin{pmatrix} 12t \\ 12t+7 \\ 7t+8 \end{pmatrix}[/mm]
> 3. Zeile mit 2 multiplizieren:
>  
> [mm] > \begin{pmatrix} > 2 & 4 & 2 \\ > 2 & 12 & 7 \\ > 2 & 20 & 12 > \end{pmatrix} \begin{pmatrix} 12t \\ 12t+7 \\ 14t+16 \end{pmatrix}[/mm]
> 1. Zeile von der 2. Zeile subtrahieren:
>  
>
> [mm] > \begin{pmatrix} > 2 & 4 & 2 \\ > 0 & 8 & 5 \\ > 2 & 20 & 12 > \end{pmatrix} \begin{pmatrix} 12t \\ 7 \\ 14t+16 \end{pmatrix}[/mm]
> 1. Zeile von der 3. Zeile subtrahieren:
>  
>
>
> [mm] > \begin{pmatrix} > 2 & 4 & 2 \\ > 0 & 8 & 5 \\ > 0 & 16 & 10 > \end{pmatrix} \begin{pmatrix} 12t \\ 7 \\ 2t+16 \end{pmatrix}[/mm]
> 3. Zeile durch 2 dividieren:
>  
> [mm] > \begin{pmatrix} > 2 & 4 & 2 \\ > 0 & 8 & 5 \\ > 0 & 8 & 5 > \end{pmatrix} \begin{pmatrix} 12t \\ 7 \\ t+8 \end{pmatrix}[/mm]
>  
>
> Das Lineare Gleichungssystem sieht nun wie folgt aus:
>  
> (1) [mm] $x_1 [/mm] + [mm] 2x_2 [/mm] + [mm] x_3 [/mm] = 6t$
>  (2) [mm] $8x_2 [/mm] + [mm] 5x_3 [/mm] = 7$
>  (3) [mm] $8x_2 [/mm] + [mm] 5x_3 [/mm] = t+8$
>  
> (2) minus (3) = (4) $0= 7-(t+8)$
>  [mm] $\Rightarrow [/mm] 0= 7-t-8$
>  [mm] $\Rightarrow [/mm] 0= -t-1$
>  [mm] $\Rightarrow [/mm] t= -1$
>  
> Für $t=-1$ ist das lineare Gleichungssystem lösbar.

[ok]

An dieser Stelle ist die Aufgabe fertig. Es war ja nur danach gefragt, für welche t es eine Lösung gibt.

Der Rest jetzt ist zusätzliche Fleißarbeit:

> $t=-1$ setze ich in das lineare Gleichungssystem :
>  
>
> (1) [mm] $x_1 [/mm] + [mm] 2x_2 [/mm] + [mm] x_3 [/mm] = -6$
>  (2) [mm] $8x_2 [/mm] + [mm] 5x_3 [/mm] = 7$
>  (3) [mm] $8x_2 [/mm] + [mm] 5x_3 [/mm] = 7$
>  
> Ich setze [mm] $x_1=1$ [/mm] in (1):
>  
> (4) [mm] $1+2x_2+x_3=-6$ [/mm]
>  [mm] $\Rightarrow 2x_2+x_3=-7$ [/mm]
>  
> (4) mal 4 = (4) [mm] $8x_2 [/mm] + [mm] 4x_3 [/mm] = -28$
>  
> (2) minus (5) = (6) [mm] $x_3 [/mm] = 35$
>  
> Ich setze [mm] $x_1=1$ [/mm] und [mm] $x_3=35$ [/mm] in (1) ein:
>  
> (7) [mm] $1+2x_2+35 [/mm] = -6$
>  [mm] $\Rightarrow 2x_2 [/mm] = -42$
>  [mm] $\Rightarrow x_2 [/mm] = -21$
>  
> Für $t=-1$ sieht die Lösung des linearen Gleichungssystems
> so aus:
>  
> [mm] $L=\{ (1,-21,35)\}$ [/mm]

Dies ist eine Lösung, von unendlich vielen.

> Könnte ich nun so etwas schreiben und wie soll ich das am
> Ende formulieren?
>  
> [mm] $L_t=\{ (-t,21t,-35t)\}$ [/mm]

Das sehe ich jetzt mehr. Erstes ist verwirrend, dass du hier die Variable t benutzt, denn dieses t hat ja mit dem t der Aufgabenstellung nichts zu tun.

Um alle Lösungen des LGS zu "erfassen", kannst du entweder alle Lösungen in Abhängigkeit einer Variablen angeben (z.B. [mm] $x_1$, $x_2$ [/mm] oder [mm] $x_3$) [/mm] oder du findest zunächst eine Lösung für das zugehörige homogene LGS und eine Lösung für das inhomogene LGS; im zweiten Fall sind dann alle Linearkombinationen der "homogenen" Lösung + der "inhomogenen" Lösung die Lösung des ganzen LGS.

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de