LGS mit konvexer Lösung < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 22:40 Mi 19.04.2017 | Autor: | Llarian |
Aufgabe | Die Aufgabenstellung lautet:
Sei A eine (mxn)-Matrix, mit Elementen aus einem Körper [mm] \IK [/mm] und n [mm] \ge [/mm] m. Sei b ein Vektor der Länge m aus dem gleichen Körper [mm] \IK. [/mm] Das Gleichungssystem Ax=b habe eine Lösung x, mit 0 [mm] \le [/mm] x [mm] \le [/mm] 1 (d.h. dies gilt für jeden Eintrag des Vektors x). Zu zeigen ist, dass dann eine Lösung y existiert, 0 [mm] \le [/mm] y [mm] \le [/mm] 1, in der höchstens m Koordinaten von 0 oder 1 verschieden sind.
Meine Überlegungen dazu:
Diese Aufgabe wurde im Kontext von konvexen Mengen gestellt. Es ist klar, dass das Gleichungssystem Ax = b lösbar ist, da mindestens eine Lösung nach Voraussetzung existiert. Der Lösungsraum umfasst nach der Rangformel für lineare Gleichungssysteme n-m Dimensionen. Dieser Lösungsraum kann nun mit der Menge y, für die 0 [mm] \le [/mm] y [mm] \le [/mm] 1 gilt, geschnitten werden. Man erhält so Lösungen, welche in m Koordinaten nicht 0 oder 1 sind. |
Der obige Lösungsweg ist sehr grob, darum ist meine Frage, ob jemand hier Hilfsmittel kennt, um diese Lösung formal besser herzuleiten? Ich kann leider keinen direkten Bezug zwischen dieser Aufgabe und den mir bekannten Sätzen aus der linearen Algebra finden.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 20:49 Fr 21.04.2017 | Autor: | Llarian |
Ich habe die Aufgabe inzwischen gelöst; da ich neu bin, wie kann ich den Status der Frage auf gelöst setzen oder die Frage löschen?
|
|
|
|