www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - LU- Zerlegung
LU- Zerlegung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LU- Zerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:11 Di 29.05.2012
Autor: mathemaus2010

Aufgabe
Bestimmen Sie eine LU - Zerlegung der Matrix

A = [mm] \pmat{ 1 & 2 & 3 & 0 \\ 4 & 0 & 0 & 1 \\ 5 & 0 & 6 & 0 \\ 0 & 1 & 0 & 1 } \in R^{4,4} [/mm] .

Hallo liebes Forum,

ich hoffe ihr könnt mir helfen, da ich den Fehler nicht sehe. Ich mache das mal so, wie ich das verstanden habe:

[mm] \pmat{ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 } [/mm] und [mm] \pmat{ 1 & 2 & 3 & 0 \\ 4 & 0 & 0 & 1 \\ 5 & 0 & 6 & 0 \\ 0 & 1 & 0 & 1 } [/mm]


---> [mm] G_{1,2}(-4) [/mm]

[mm] \pmat{ 1 & 0 & 0 & 0 \\ -4 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 } [/mm] und [mm] \pmat{ 1 & 2 & 3 & 0 \\ 0 & -8 & -12 & 1 \\ 5 & 0 & 6 & 0 \\ 0 & 1 & 0 & 1 } [/mm]


[mm] --->G_{1,3}(-5) [/mm]

[mm] \pmat{ 1 & 0 & 0 & 0 \\ -4 & 1 & 0 & 0 \\ -5 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 } [/mm] und [mm] \pmat{ 1 & 2 & 3 & 0 \\ 0 & -8 & -12 & 1 \\ 0 & -10 & -9 & 0 \\ 0 & 1 & 0 & 1 } [/mm]


---> [mm] M_{2}(-1/4) [/mm]


[mm] \pmat{ 1 & 0 & 0 & 0 \\ 1 & -1/4 & 0 & 0 \\ -5 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 } [/mm] und [mm] \pmat{ 1 & 2 & 3 & 0 \\ 0 & 2 & 3 & -1/4 \\ 0 & -10 & -9 & 0 \\ 0 & 1 & 0 & 1 } [/mm]

---> [mm] G_{2,3}(5) [/mm]

[mm] \pmat{ 1 & 0 & 0 & 0 \\ 1 & -1/4 & 0 & 0 \\ 0 & -5/4 & 1 & 0 \\ 0 & 0 & 0 & 1 } [/mm] und [mm] \pmat{ 1 & 2 & 3 & 0 \\ 0 & 2 & 3 & -1/4 \\ 0 & 0 & 6 & -5/4 \\ 0 & 1 & 0 & 1 } [/mm]

---> [mm] G_{2,4}(-1/2) [/mm]

[mm] \pmat{ 1 & 0 & 0 & 0 \\ 1 & -1/4 & 0 & 0 \\ 0 & -5/4 & 1 & 0 \\ -1/2 & 1/8 & 0 & 1 } [/mm] und [mm] \pmat{ 1 & 2 & 3 & 0 \\ 0 & 2 & 3 & -1/4 \\ 0 & 0 & 6 & -5/4 \\ 0 & 0 & -3/2 & 9/8 } [/mm]

---> [mm] G_{3,4}(1/4) [/mm]

[mm] \pmat{ 1 & 0 & 0 & 0 \\ 1 & -1/4 & 0 & 0 \\ 0 & -5/4 & 1 & 0 \\ -1/2 & -3/16 & 1/4 & 1 } [/mm] und [mm] \pmat{ 1 & 2 & 3 & 0 \\ 0 & 2 & 3 & -1/4 \\ 0 & 0 & 6 & -5/4 \\ 0 & 0 & 0 & 13/16 } [/mm]

Jetzt müsste ja eigentlich

L =  [mm] \pmat{ 1 & 0 & 0 & 0 \\ 1 & -1/4 & 0 & 0 \\ 0 & -5/4 & 1 & 0 \\ -1/2 & -3/16 & 1/4 & 1 } [/mm]  und

U =  [mm] \pmat{ 1 & 2 & 3 & 0 \\ 0 & 2 & 3 & -1/4 \\ 0 & 0 & 6 & -5/4 \\ 0 & 0 & 0 & 13/16 } [/mm]  sein, aber wenn ich L*U berechne, dann kommt

[mm] \pmat{ 1 & 2 & 3 & 0 \\ 1 & 1/2 & 9/4 & 0,06 \\ 0 & -5/2 & 9/4 & -0,94 \\ -1/2 & -1,37 & -0,56 & 0,55 } [/mm] heraus und dies hat ja nun wenig mit A zu tun.

Das ist mein Problem, dass ich einfach nicht A heraus bekomme, wobei ich meiner Ansicht nach alles richtig mache. Also wo ist der Fehler?

Liebe Grüße

Mathemaus


Ich habe diese Frage in keinem anderen Forum oder auf anderen Internetseiten gestellt.

        
Bezug
LU- Zerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:21 Di 29.05.2012
Autor: mathemaus2010

Naja gut ich habe noch vergessen, dass L auf der Diagonalen ausschließlich einsen haben muss, dann mache ich halt noch eine weitere Umformung :

---> [mm] M_{2}(-4) [/mm]

[mm] \pmat{ 1 & 0 & 0 & 0 \\ -4 & 1 & 0 & 0 \\ 0 & -5/4 & 1 & 0 \\ -1/2 & -3/16 & 1/4 & 1 } [/mm] und
[mm] \pmat{ 1 & 2 & 3 & 0 \\ 0 & -8 & -12 & 1 \\ 0 & 0 & 6 & -5/4 \\ 0 & 0 & 0 & 13/16 } [/mm]

aber auch wenn ich jetzt beide multipliziere, kommt  

[mm] \pmat{ 1 & 2 & 3 & 0 \\ -4 & -16 & -24 & 1 \\ 0 & 10 & 21 & -2,5 \\ -0,5 & 0,5 & 2,25 & 0,31 } [/mm] und das hat ja auch nichts mit A gemein =( .

Bezug
        
Bezug
LU- Zerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:57 Di 29.05.2012
Autor: wieschoo

Hi

Multiplizier mal schon nach dem ersten Schritt beide Matrizen.
Und schau dort mal nach dem Vorzeichen.

wieschoo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de