www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - L'Hôspital
L'Hôspital < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

L'Hôspital: Lösung bitte erklären
Status: (Frage) beantwortet Status 
Datum: 15:43 Mo 18.02.2008
Autor: diecky

Aufgabe
[mm] \limes_{x\rightarrow 0}(1+\sin(x))^{\bruch{1}{\sin(x)}} [/mm]

Berechnen Sie mit Hilfe des Satzes von L'Hôspital den Grenzwert.

Ich habe hier als Lösung "e" stehen, aber ich versteh nicht wieso..ich krieg irgendwie 1 raus.

Erstmal hab ich den ganzen Term mal *log genommen, damit der Bruch oben nach unten wandert. Das sieht dann so aus:
[mm] \bruch{\log(1+\sin(x))}{\sin(x)} [/mm]
Sowohl der Zähler, als auch der Nenner gehen beide gegen 0, sodass wir L'Hôspital anwenden können.
[mm] f(x)=\log(1+\sin(x)) [/mm]
[mm] g(x)=\sin(x) [/mm]

[mm] f'(x)=\bruch{\cos (x)}{1+\sin(x)} [/mm]
[mm] g'(x)=\cos(x) [/mm]

Wenn ich jetzt wieder Zähler und Nenner gegen 0 laufen lasse, erhalte ich sowohl im Nenner, als auch im Zähler 1...also wäre laut meiner Rechnung der Grenzwert 1.
Wo liegt der Fehler? Und wie komm ich an das e?
Ich hab den Verdacht, dass bereits ganz am Anfang bei der Umformierung der Haken ist, allerdings find ich keine passende Formel mit e und log...oder kann ich [mm] e^{logy} [/mm] = y dafür irgendwie gebrauchen?

Danke!

        
Bezug
L'Hôspital: erste Umformung
Status: (Antwort) fertig Status 
Datum: 15:55 Mo 18.02.2008
Autor: Roadrunner

Hallo diecky!


Deine erste Umformung sollte hier sein wie folgt. Denn einafch so logarithmieren darfst Du den Term ja nicht, da Du sonst den Wert veränderst.

[mm] $$(1+\sin(x))^{\bruch{1}{\sin(x)}} [/mm] \ = \ [mm] \left[e^{\log(1+\sin(x))}\right]^{\bruch{1}{\sin(x)}} [/mm] \ = \ [mm] e^{\bruch{\log(1+\sin(x))}{\sin(x)}}$$ [/mm]

Und wenn du nun den Grenzwert im Exponenten betrachtest, erhältst Du den Wert $1_$ und als Gesamtgrenzwert dann [mm] $e^{\red{1}} [/mm] \ = \ e$ .


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de