www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - L'Hospital
L'Hospital < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

L'Hospital: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:21 Mi 19.05.2010
Autor: zocca21

Aufgabe
Grenzwerte berechnen mit L'Hospital:

a) [mm] \limes_{x\rightarrow\ 0+0} [/mm] ln(x) * [mm] x^2 [/mm]

b) [mm] \limes_{x\rightarrow\ 1} \bruch{1}{ln(x)} [/mm] - [mm] \bruch{1}{(x-1)} [/mm]

Ich bin nun immer folgendermaßen vorgegangen:

a) Abgeleitet...

[mm] \limes_{x\rightarrow\ 0+0} [/mm] f'(x) = ln(x) * 2x + x

[mm] \limes_{x\rightarrow\ 0+0} [/mm] f''(x) = ln(x) * 2 + 2 + 1

Einsetzen von 0 -> 3...jedoch ist das wohl nicht richtig..

b)  habe ich erstmal auf einen Hauptnenner gebracht? ist das immer zu machen wenn man minus oder plus stehen hat??

[mm] \limes_{x\rightarrow\ 1} \bruch{x-1-ln(x)}{ln(x) * (x-1)} [/mm]

[mm] \limes_{x\rightarrow\ 1} [/mm] f'(x) = [mm] \bruch{1 - 1/x}{(1/x) *(x-1) + ln(x)} [/mm]

[mm] \limes_{x\rightarrow\ 1} [/mm] f''(x) = [mm] \bruch{1/x^2}{(-1/x^2)*(x-1) + (1/x) + (1/x)} [/mm]

Einsetzen von 1 ergibt Grenzwert von 1/2 ?

        
Bezug
L'Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 22:36 Mi 19.05.2010
Autor: reverend

Hallo zocca21,

bei Aufgabe a) solltest Du nochmal nachschauen, wann man l'Hospital eigentlich anwenden darf und die Aufgabe erst einmal in eine Form bringen, bei der das dann auch geht. So jedenfalls nicht.

Bei Aufgabe b) musst du natürlich alles zu einem Bruch zusammenfassen, um l'Hospital anzuwenden (s.o.).

> b) [mm]\limes_{x\rightarrow\ 1} \bruch{1}{ln(x)}-\bruch{1}{(x-1)}[/mm]

>

> [...]  habe ich erstmal auf einen Hauptnenner gebracht? ist
> das immer zu machen wenn man minus oder plus stehen hat??

Die Frage ist ungenau.

> [mm]\limes_{x\rightarrow\ 1} \bruch{x-1-ln(x)}{ln(x) * (x-1)}[/mm]
>  
> [mm]\limes_{x\rightarrow\ 1}[/mm] f'(x) = [mm]\bruch{1 - 1/x}{(1/x) *(x-1) + ln(x)}[/mm]

[ok]

> [mm]\limes_{x\rightarrow\ 1}[/mm] f''(x) =
> [mm]\bruch{1/x^2}{(-1/x^2)*(x-1) + (1/x) + (1/x)}[/mm]

[ok]

> Einsetzen von 1 ergibt Grenzwert von 1/2 ?

Jawoll.

Grüße
reverend

Bezug
                
Bezug
L'Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:54 Mi 19.05.2010
Autor: zocca21

Anwendung nur bei:

[mm] \bruch{0}{0} [/mm] bzw.. [mm] \bruch{\infty}{\infty} [/mm]

Das bedeutet ich muss bei der Aufgabe a) irgendwie einen Bruch kreieren?

Bezug
                        
Bezug
L'Hospital: richtig erkannt
Status: (Antwort) fertig Status 
Datum: 23:00 Mi 19.05.2010
Autor: Loddar

Hallo zocca!


> Das bedeutet ich muss bei der Aufgabe a) irgendwie einen
> Bruch kreieren?

[ok] Genau!

Wie wäre es mit:
[mm] $$x^2*\ln(x) [/mm] \ = \ [mm] \bruch{\ln(x)}{\bruch{1}{x^2}}$$ [/mm]

Gruß
Loddar


Bezug
                                
Bezug
L'Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:13 Mi 19.05.2010
Autor: zocca21

f'(x) = [mm] \bruch{1/x}{-2/x^3} [/mm]

Somit geht es gegen -> 0..


Bezug
                                        
Bezug
L'Hospital: Korrektur
Status: (Antwort) fertig Status 
Datum: 23:22 Mi 19.05.2010
Autor: Loddar

Hallo zocca!


> f'(x) = [mm]\bruch{1/x}{-2/x^3}[/mm]
>
> Somit geht es gegen -> 0..

[ok]

  

> Zum Verständnis..
>  
> Wenn ich z.B. ln(x) * ln(2x) hätte
>  könnte ich dann schreiben
>  
> ln(x) * ln(2x) = [mm]\bruch{ln(x)}{1/(ln(2x)^-1)}[/mm] ?? (soll hoch
> minus 1 heißen)

Nein, das "hoch -1" ist zuviel und gehört da nicht hin.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de