www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Laplace-Transformation" - LaPLace Transformation
LaPLace Transformation < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LaPLace Transformation: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:25 Mo 10.08.2009
Autor: FHTuning

Hallo,

ich habe ein Problem bei der LaPlace-Transformation. Dieses Problem tritt auf, sobald ich die Nullstellen des Nenners bestimmen will, die notwendig für eine Partialbruchzerlegung sind.

Dann komm ich bei manchen Aufgaben zu Termen wie: [mm] (s^{2}+4)(s-1)(s-1) [/mm] oder [mm] (s^{2}+1)(s-1)(s-1). [/mm]

Für die beiden hinteren Klammerausdrücke liegt jeweils die Nullstelle bei 1. Aber wie verhält sich das für die erste Klammer? Oder muss ich hierbei erst alle Klammern auflösen und die erste Nullstelle durch ausprobieren bestimmen??


Anderes Problem:
Bei 4 Nullstellen gibt es eine doppelte Nullstelle bei 1.
Das Problem mit dem Aufstellen des linearen Gleichungssystems ist nun, dass ich 2mal den Wert für eine Variable errechne (genommen hab ich ABCD), aber dann für eine Variable keinen Wert bestimmen kann mit den Nullstellenwerten.

Setze ich nun einen beliebigen Wert ein, kann ich zwar durch einsetzen des vorherberechneten für die anderen 3 Variablen auch meine vierte bestimmen, nur dieser Wert scheint augenscheinlich falsch zu sein :(

Gibt es dort noch ein anderes Prinzip?

mfg

FHTUning

        
Bezug
LaPLace Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Mo 10.08.2009
Autor: Herby

Hallo FHTuning,

> Hallo,
>  
> ich habe ein Problem bei der LaPlace-Transformation. Dieses
> Problem tritt auf, sobald ich die Nullstellen des Nenners
> bestimmen will, die notwendig für eine
> Partialbruchzerlegung sind.
>  
> Dann komm ich bei manchen Aufgaben zu Termen wie:
> [mm](s^{2}+4)(s-1)(s-1)[/mm] oder [mm](s^{2}+1)(s-1)(s-1).[/mm]

> Für die beiden hinteren Klammerausdrücke liegt jeweils
> die Nullstelle bei 1. Aber wie verhält sich das für die
> erste Klammer? Oder muss ich hierbei erst alle Klammern
> auflösen und die erste Nullstelle durch ausprobieren
> bestimmen??

Dann wirst du bis genau zu der gleichen Stelle kommen wie jetzt. Die Gleichung [mm] s^2+4=0 [/mm] hat zwei Lösungen aus den komplexen Zahlen. Du kannst hier z.B. den Ansatz: Ks+P nehmen, dann brauchst du [mm] s^2+4 [/mm] nicht auflösen.

[mm] \bruch{1}{(s^2+4)*(s-1)*(s-1)}=\bruch{Ks+P}{s^2+4}+\bruch{A}{s-1}+\bruch{B}{(s-1)^2} [/mm]


>
> Anderes Problem:
>  Bei 4 Nullstellen gibt es eine doppelte Nullstelle bei 1.

siehe oben :-)

>  Das Problem mit dem Aufstellen des linearen
> Gleichungssystems ist nun, dass ich 2mal den Wert für eine
> Variable errechne (genommen hab ich ABCD), aber dann für
> eine Variable keinen Wert bestimmen kann mit den
> Nullstellenwerten.
>  
> Setze ich nun einen beliebigen Wert ein, kann ich zwar
> durch einsetzen des vorherberechneten für die anderen 3
> Variablen auch meine vierte bestimmen, nur dieser Wert
> scheint augenscheinlich falsch zu sein :(
>  
> Gibt es dort noch ein anderes Prinzip?
>  
> mfg
>  
> FHTUning


Lg
Herby

Bezug
                
Bezug
LaPLace Transformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:10 Mo 10.08.2009
Autor: FHTuning

Es tut mir leid, ich weiß´leider nicht, was damit gemeint ist. In den Büchern kann ich leider auch nichts dazu finden.

Könntest du dich ein wenig präziser ausdrücken, bzw. einen Schritt mir das weiter vorrechnen`?

mfg

Bezug
                        
Bezug
LaPLace Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 Mo 10.08.2009
Autor: MathePower

Hallo FHTuning,

> Es tut mir leid, ich weiß´leider nicht, was damit gemeint
> ist. In den Büchern kann ich leider auch nichts dazu
> finden.
>
> Könntest du dich ein wenig präziser ausdrücken, bzw.
> einen Schritt mir das weiter vorrechnen'?


Wir haben ja

[mm]\bruch{1}{(s^2+4)\cdot{}(s-1)\cdot{}(s-1)}=\bruch{Ks+P}{s^2+4}+\bruch{A}{s-1}+\bruch{B}{\left(s-1\right)^2}[/mm]

Multiplikation mit dem Hauptnenner ergibt:

[mm]\bruch{1}{(s^2+4)\cdot{}(s-1)\cdot{}(s-1)}=\bruch{\left(Ks+P\right)*\left(s-1\right)^{2}+A*\left(s^{2}+4\right)*\left(s-1\right)+B*\left(s^{2}+4\right)}{(s^2+4)\cdot{}(s-1)\cdot{}(s-1)}[/mm]


Nun vergleicht Du das Polynom

[mm]\left(Ks+P\right)*\left(s-1\right)^{2}+A*\left(s^{2}+4\right)*\left(s-1\right)+B*\left(s^{2}+4\right)[/mm]

mit dem Polynom

[mm]0*s^{3}+0*s^{2}+0*s+1[/mm]

indem Du ersteres Polynom ausmultiplizierst,
und einen []Koeffizientenvergleich durchführst.

Dies  führt dann in aller Regel zu einem []linearen Gleichungssystem.


>  
> mfg


Gruß
MathePower

Bezug
                                
Bezug
LaPLace Transformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:37 Mo 10.08.2009
Autor: FHTuning

Vielen Dank, damit wurde es mir deutlich klarer!!

DANKE

Bezug
                                        
Bezug
LaPLace Transformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 Di 11.08.2009
Autor: FHTuning

Dieses Verfahren klappte bisher sehr gut, nur nun bin ich an einen Punkt angekommen, bei dem ich die Form:

[mm] Y(s)=\bruch{2}{(s-1)^{3}*(s-2)^{2}} [/mm] habe.

Hier sind ja 5 Nullstellen vorhanden, jeweils 3 bei 1 und zwei bei 2.

Wenn ich das jetzt versuche mit dem Koeffizientenvergleich aufzulösen komme ich auf einen riesigen Term, der sich nachher im Gleichungssystem selber kürzt!!

Diese Aufgabe kam in 6 Jahren erst 2mal dran, aber ich würde dennoch gerne die Logik dahinter verstehen.

Allgemein: Was mache ich wenn ich alle Nullstellen bestimmen kann, sich aber doppelte oder mehrfache Nullstellen an einem Punkt befinden?? Wie setze ich das in die zuvor genannte Form ein??

mfg

Bezug
                                                
Bezug
LaPLace Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 11:47 Di 11.08.2009
Autor: Herby

Hallo,

> Dieses Verfahren klappte bisher sehr gut, nur nun bin ich
> an einen Punkt angekommen, bei dem ich die Form:
>  
> [mm]Y(s)=\bruch{2}{(s-1)^{3}*(s-2)^{2}}[/mm] habe.
>  
> Hier sind ja 5 Nullstellen vorhanden, jeweils 3 bei 1 und
> zwei bei 2.

Dann lautet dein Ansatz wie folgt:


[mm] \bruch{2}{(s-1)^{3}*(s-2)^{2}}=\bruch{A}{s-1}+\bruch{B}{(s-1)^2}+\bruch{C}{(s-1)^3}+\bruch{D}{s-2}+\bruch{E}{(s-2)^2} [/mm]


Eine kleine Erklärung dazu findest du hier: MBPartialbruchzerlegung


Lg
Herby

Bezug
                                                        
Bezug
LaPLace Transformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:56 Di 11.08.2009
Autor: FHTuning

Danke,

die Form der Partialbruchtzerlegung war mir schon bekannt.

Mein Problem ist dass ich 6 lineare Gleichungssysteme aufstellen muss, wovon sich beim Einsetzen manche komplett auslöschen.

Kann mir da jemand helfen??

ich hatte gehofft es würde sich um einen anderen Ansatz hier handeln.

mfg

Bezug
                                                                
Bezug
LaPLace Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Di 11.08.2009
Autor: Herby

Hallo FHTuning,

> Danke,
>  
> die Form der Partialbruchtzerlegung war mir schon bekannt.
>  
> Mein Problem ist dass ich 6 lineare Gleichungssysteme
> aufstellen muss, wovon sich beim Einsetzen manche komplett
> auslöschen.

ich habe das gerade mal durchgespielt:

$ [mm] \bruch{2}{(s-1)^{3}\cdot{}(s-2)^{2}}=\bruch{A}{s-1}+\bruch{B}{(s-1)^2}+\bruch{C}{(s-1)^3}+\bruch{D}{s-2}+\bruch{E}{(s-2)^2} [/mm] $

Wenn ich mit dem Hauptnenner erweitere, dann erhalte ich auf der rechten Seite:

[mm] $A(s-1)^2(s-2)^2\ [/mm] =\ [mm] 1*As^4-6*As^3+13*As^2-12*As+4*A$ [/mm]

[mm] $B(s-1)(s-2)^2\ [/mm] =\ [mm] 1*Bs^3-5*Bs^2+8*Bs-4*B$ [/mm]

[mm] $C(s-2)^2\ [/mm] =\ [mm] 1*Cs^2-4*Cs+4*C$ [/mm]

[mm] $D(s-1)^3(s-2)\ [/mm] =\ [mm] 1*Ds^4-5*Cs^3+9*Ds^2-7*Ds+2*D$ [/mm]

[mm] $E(s-1)^3\ [/mm] =\ [mm] 1*Es^3-3*Es^2+3*Es-1*E$ [/mm]


Für die Koeffizienten bedeutet das:

[mm] 0*s^4=(A+D)*s^4 [/mm]

[mm] 0*s^3=(-6A+B-5D+E)*s^3 [/mm]

[mm] 0*s^2=(13A-5B+C+9D-3E)*s^2 [/mm]

[mm] 0*s^1=(-12A+8B-4C-7D+3E)*s^1 [/mm]

[mm] 2*s^0=(4A-4B+4C+2D-E)*s^0 [/mm]

Fünf Gleichungen, fünf Unbekannte und das System ist lösbar, weil Rang(A)=Rang(A|b)


Vergleich' mal mit deinen Werten, vielleicht hast du irgendwo ein anderes Vorzeichen.


Lg
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de